Cloud applications are increasingly shifting to interactive and loosely-coupled microservices. Despite their advantages, microservices complicate resource management, due to inter-tier dependencies. We present Sinan, a cluster manager for interactive microservices that leverages easily-obtainable tracing data instead of empirical decisions, to infer the impact of a resource allocation on on end-to-end performance, and allocate appropriate resources to each tier. In a preliminary evaluation of Sinan with an end-to-end social network built with microservices, we show that Sinan’s data-driven approach, allows the service to always meet its QoS without sacrificing resource efficiency.