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ABSTRACT

Cloud applications are increasingly shifting from large monolithic

services, to large numbers of loosely-coupled, specialized microser-

vices. Despite their advantages in terms of facilitating development,

deployment, modularity, and isolation, microservices complicate

resource management, as dependencies between them introduce

backpressure effects and cascading QoS violations.

We present Sinan, a data-driven cluster manager for interactive

cloud microservices that is online and QoS-aware. Sinan lever-

ages a set of scalable and validated machine learning models to

determine the performance impact of dependencies between mi-

croservices, and allocate appropriate resources per tier in a way that

preserves the end-to-end tail latency target. We evaluate Sinan both

on dedicated local clusters and large-scale deployments on Google

Compute Engine (GCE) across representative end-to-end applica-

tions built with microservices, such as social networks and hotel

reservation sites. We show that Sinan always meets QoS, while also

maintaining cluster utilization high, in contrast to prior work which

leads to unpredictable performance or sacrifices resource efficiency.

Furthermore, the techniques in Sinan are explainable, meaning that

cloud operators can yield insights from the ML models on how to

better deploy and design their applications to reduce unpredictable

performance.
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·Computer systems organization→Cloud computing; ·Com-

puting methodologies→ Planning and scheduling.
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1 INTRODUCTION

In recent years, cloud applications have progressively shifted from

monolithic services to graphs with hundreds of single-purpose and

loosely-coupled microservices [1, 6, 7, 24ś26, 46, 47]. This shift is

becoming increasingly pervasive, with large cloud providers, such

as Amazon, Twitter, Netflix, and eBay having already adopted this

application model [1, 6, 7].

Despite several advantages, such as modular and flexible de-

velopment and rapid iteration, microservices also introduce new

system challenges, especially in resource management, since the

complex topologies of microservice dependencies exacerbate queue-

ing effects, and introduce cascading Quality of Service (QoS) vi-

olations that are difficult to identify and correct in a timely man-

ner [26, 53]. Current cluster managers are designed for monolithic

applications or applications consisting of a few pipelined tiers,

and are not expressive enough to capture the complexity of mi-

croservices [17, 19, 20, 22, 26, 31ś33, 35, 36, 43, 44, 51]. Given that

an increasing number of production cloud services, such as EBay,

Netflix, Twitter, and Amazon, are now designed as microservices,

addressing their resource management challenges is a pressing

need [6, 7, 26].

We take a data-driven approach to tackle the complexity mi-

croservices introduce to resource management. Similar machine

learning (ML)-driven approaches have been effective at solving

resource management problems for large-scale systems in previous

work [14, 16ś18, 18, 19, 21, 42]. Unfortunately, these systems are

not directly applicable to microservices, as they were designed for

monolithic services, and hence do not account for the impact of

dependencies between microservices on end-to-end performance.

We present Sinan, a scalable and QoS-aware resource manager

for interactive cloud microservices. Instead of tasking the user or

cloud operator with inferring the impact of dependencies between

microservices, Sinan leverages a set of validated ML models to

automatically determine the impact of per-tier resource allocations
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on end-to-end performance, and assign appropriate resources to

each tier.

Sinan first uses an efficient space exploration algorithm to exam-

ine the space of possible resource allocations, especially focusing

on corner cases that introduce QoS violations. This yields a training

dataset used to train two models: a Convolutional Neural Network

(CNN) model for detailed short-term performance prediction, and

a Boosted Trees model that evaluates the long-term performance

evolution. The combination of the two models allows Sinan to both

examine the near-future outcome of a resource allocation, and to

account for the system’s inertia in building up queues with higher

accuracy than a single model examining both time windows. Sinan

operates online, adjusting per-tier resources dynamically according

to the service’s runtime status and end-to-end QoS target. Finally,

Sinan is implemented as a centralized resource manager with global

visibility into the cluster and application state, and with per-node

resource agents that track per-tier performance and resource uti-

lization.

We evaluate Sinan using two end-to-end applications fromDeath-

StarBench [26], built with interactive microservices: a social net-

work and a hotel reservation site. We compare Sinan against both

traditionally-employed empirical approaches, such as autoscal-

ing [4], and previous research onmulti-tier service scheduling based

on queueing analysis, such as PowerChief [52]. We demonstrate

that Sinan outperforms previous work both in terms of performance

and resource efficiency, successfully meeting QoS for both applica-

tions under diverse load patterns. On the simpler hotel reservation

application, Sinan saves 25.9% on average, and up to 46.0% of the

amount of resources used by other QoS-meeting methods. On the

more complex social network service, where abstracting applica-

tion complexity is more essential, Sinan saves 59.0% of resources

on average, and up to 68.1%, essentially accommodating twice the

amount of requests per second, without the need for more resources.

We also validate Sinan’s scalability through large-scale experiments

on approximately 100 container instances on Google Compute En-

gine (GCE), and demonstrate that the models deployed on the local

cluster can be reused on GCE with only minor adjustments instead

of retraining.

Finally, we demonstrate the explainability benefits of Sinan’s

models, delving into the insights they can provide for the design

of large-scale systems. Specifically, we use an example of Redis’s

log synchronization, which Sinan helped identify as the source of

unpredictable performance out of tens of dependent microservices

to show that the system can offer practical and insightful solu-

tions for clusters whose scale make previous empirical approaches

impractical.

2 OVERVIEW

2.1 Problem Statement

Sinan aims to manage resources for complex, interactive microser-

vices with tail latency QoS constraints in a scalable and resource-

efficient manner. Graphs of dependent microservices typically in-

clude tens to hundreds of tiers, each with different resource require-

ments, scaled out and replicated for performance and reliability.

Section 2.2 describes some motivating examples of such services

with diverse functionality used in this work; other similar examples

can be found in [1, 6, 7, 46].

Most cluster managers focus on CPU and memory manage-

ment [14, 42, 51]. Microservices are by design mostly stateless,

hence their performance is defined by their CPU allocation. Given

this, Sinan primarily focuses on allocating CPU resources to each

tier [26], both at sub-core and multi-core granularity, leveraging

Linux cgroups through the Docker API [2]. We also provision each

tier with the maximum profiled memory usage to eliminate out of

memory errors.

2.2 Motivating Applications

We use two end-to-end interactive applications from DeathStar-

Bench [26]: a hotel reservation service, and a social network.

2.2.1 Hotel Reservation. The service is an online hotel reservation

site, whose architecture is shown in Figure 1.

Functionality: The service supports searching for hotels using

geolocation, placing reservations, and getting recommendations. It

is implemented in Go, and tiers communicate over gRPC [5]. Data

backends are implemented in memcached for in-memory caching,

and MongoDB, for persistent storage. The database is populated

with 80 hotels and 500 active users.
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Figure 1: Hotel reservation microservice architecture [26].

Client requests first reach a front-end webserver, and, de-

pending on the type of requests, are then directed to logic

tiers implementing functionality for searching hotels, com-

pleting hotel reservations, and getting recommendations

on available hotels. At the right-most of the figure, the

requests reach the back-end databases, implemented both

with in-memory caching tiers (memcached), and persistent

databases (MongoDB).

2.2.2 Social Network. The end-to-end service implements a broad-

cast style social network with uni-directional follow relationships,

shown in Figure 2. Inter-microservice messages use Apache Thrift

RPCs [48].

Functionality: Users can create posts embedded with text, media,

links, and tags to other users, which are then broadcasted to all their

followers. The texts and images uploaded by users, specifically, go

through image-filter (a CNN classifier) and text-filter services (an

SVM classifier), and contents violating the service’s ethics guide-

lines are rejected. Users can also read posts on their timelines. We

use the Reed98 [41] social friendship network to populate the user
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database. User activity follows the behavior of Twitter users re-

ported in [30], and the distribution of post text length emulates

Twitter’s text length distribution [28].
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Figure 2: Social Network microservice architecture [26].

Client requests first reach Nginx, which works as frontend

http servers. Then, depending on the type of user request,

a number of logic, mid-tiers will be invoked to create a

post, read a user’s timeline and to follow/unfollow users.

At the right-most of the figure, the requests reach the back-

end databases, implemented both with in-memory caching

tiers (memcached andRedis), and persistent databases (Mon-

goDB).

2.3 Management Challenges & the Need for ML

Resource management in microservices faces four challenges.

1. Dependencies among tiers Resource management in microser-

vices is additionally complicated by the fact that dependent mi-

croservices are not perfect pipelines, and hence can introduce back-

pressure effects that are hard to detect and prevent [26, 53]. These

dependencies can be further exacerbated by the specific RPC and

data store API implementation. Therefore, the resource scheduler

should have a global view of the microservice graph and be able to

anticipate the impact of dependencies on end-to-end performance.

2. System complexity Given that application behaviors change

frequently, resource management decisions need to happen online.

This means that the resource manager must traverse a space that

includes all possible resource allocations per microservice in a prac-

tical manner. Prior empirical approaches use resource utilization [4],

or latency measurements [11, 19, 32] to drive allocation decisions.

Queueing approaches similarly characterize the system state using

queue lengths [52]. Unfortunately these approaches cannot be di-

rectly employed in complex microservices with tens of dependent

tiers. First, microservice dependencies mean that resource usage

across tiers is codependent, so examining fluctuations in individual

tiers can attribute poor performance to the wrong tier. Similarly,

although queue lengths are accurate indicators of a microservice’s

system state, obtaining exact queue lengths is hard. First, queues

exist across the system stack from the NIC and OS, to the network

stack and application. Accurately tracking queue lengths requires

application changes and heavy instrumentation, which can nega-

tively impact performance and/or is not possible in public clouds.

Second, the application may include third-party software whose

source code cannot be instrumented. Alternatively, expecting the

user to express each tier’s resource sensitivity is problematic, as

users already face difficulties correctly reserving resources for sim-

ple, monolithic workloads, leading to well-documented underuti-

lization [19, 39], and the impact of microservice dependencies is

especially hard to assess, even for expert developers.

3. Delayed queueing effect Consider a queueing system with

processing throughput𝑇𝑜 under a latency QoS target, like the one in

Figure 3.𝑇𝑜 is a non-decreasing function of the amount of allocated

resources 𝑅. For input load𝑇𝑖 ,𝑇𝑜 should equal or slightly surpass𝑇𝑖
for the system to stablymeet QoS, while using theminimum amount

of resources 𝑅 needed. Even when 𝑅 is reduced, such that 𝑇𝑜 < 𝑇𝑖 ,

QoS will not be immediately violated, since queue accumulation

takes time.

Figure 3: The figure showcases

the delayed queueing effect in

microservices; QoS violations

that are not detected eagerly

(blue line), become unavoidable

(red), even if later action is

taken.

The converse is also

true; by the time QoS

is violated, the built-

up queue takes a long

time to drain, even if re-

sources are upscaled im-

mediately upon detect-

ing the violation (red

line). Multi-tiermicroser-

vices are complex queue-

ing systemswith queues

both across and within

microservices. This de-

layed queueing effect

highlights the need for

ML to evaluate the long-

term impact of resource

allocations, and to proac-

tively prevent the re-

sourcemanager from re-

ducing resources too aggressively, to avoid latency spikes with long

recovery periods. To mitigate a QoS violation, the manager must

increase resources proactively (blue line), otherwise the violation

becomes unavoidable, even if more resources are allocated a poste-

riori.

4. Boundaries of resource allocation space Data collection or

profiling are essential to the performance of any model. Given the

large resource allocation space in microservices, it is essential for

any resource manager to quickly identify the boundaries of that

space that allow the service to meet its QoS, with the minimum

resource amount [23], so that neither performance nor resource

efficiency are sacrificed. Prior work often uses random exploration

of the resource space [11, 19, 32] or uses prior system state as

the training dataset [25]. Unfortunately, while these approaches

work for simpler applications, in microservices they are prone to

covariant shift. Random collection blindly explores the entire space,

even though many of the explored points may never occur during

the system’s normal operation, and may not contain any points

close to the resource boundary of the service. On the contrary,

data from operation logs are biased towards regions that occur
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frequently in practice but similarly may not include points close

to the boundary, as cloud systems often overprovision resources

to ensure that QoS is met. To reduce exploration overheads it is

essential for a cluster manager to efficiently examine the necessary

and sufficient number of points in the resource space that allow it

to just meet QoS with the minimum resources.

2.4 Proposed Approach

These challenges suggest that empirical resourcemanagement, such

as autoscaling [4] or queueing analysis-based approaches for multi-

stage applications, such as PowerChief [52], are prone to unpre-

dictable performance and/or resource inefficiencies. To tackle these

challenges, we take a data-driven approach that abstracts away the

complexity of microservices from the user, and leverages ML to

identify the impact of dependencies on end-to-end performance,

and make allocation decisions. We also design an efficient space

exploration algorithm that explores the resource allocation space,

especially boundary regions that may introduce QoS violations, for

different application scenarios. Specifically, Sinan’s ML models pre-

dict the end-to-end latency and the probability of a QoS violation

for a resource configuration, given the system’s state and history.

The system uses these predictions to maximize resource efficiency,

while meeting QoS.

At a high level, the workflow of Sinan is as follows: the data

collection agent collects training data, using a carefully-designed

algorithm which addresses Challenge 4 (efficiently exploring the

resource space). With the collected data, Sinan trains two ML mod-

els: a convolution neural network (CNN) model and a boosted trees

(BT) model. The CNN handles Challenges 1 and 2 (dependencies

between tiers and navigating the system complexity), by predict-

ing the end-to-end tail latency in the near future. The BT model

addresses Challenge 3 (delayed queueing effect), by evaluating the

probability for a QoS violation further into the future, to account for

the system’s inertia in building up queues. At runtime, Sinan infers

the instantaneous tail latency and the probability for an upcoming

QoS violation, and adjusts resources accordingly to satisfy the QoS

constraint. If the application or underlying system change at any

point in time, Sinan retrains the corresponding models to account

for the impact of these changes on end-to-end performance.

3 MACHINE LEARNING MODELS

The objective of Sinan’s ML models is to accurately predict the

performance of the application given a certain resource allocation.

The scheduler can then query the model with possible resource

allocations for each microservice, and select the one that meets QoS

with the least necessary resources.

A straightforward way to achieve this is designing an ML model

that predicts the immediate end-to-end tail latency as a function of

resource allocations and utilization, since QoS is defined in terms

of latency, and comparing the predicted latency to the measured

latency during deployment is straightforward. The caveat of this ap-

proach is the delayed queueing effect described in Sec. 2.3, whereby

the impact of an allocation decision would only show up in per-

formance later. As a resolution, we experimented with training a

neural network (NN) to predict latency distributions over a future

time window: for example, the latency for each second over the

next five seconds. However, we found that the prediction accuracy

rapidly decreased the further into the future the NN tried to pre-

dict, as predictions were based only on the collected current and

past metrics (resource utilization and latency), which were accu-

rate enough for immediate-future predictions, but were insufficient

to capture how dependencies between microservices would cause

performance to evolve later on.

Considering the difficulty of predicting latency further into the

future, we set an alternative goal: predict the latency of the immedi-

ate future, such that imminent QoS violations are identified quickly,

but only predict the probability of experiencing a QoS violation

later on, instead of the exact latency of each decision interval. This

binary classification is a much more contained problem than de-

tailed latency prediction, and still conveys enough information to

the resource manager on performance events, e.g., QoS violations,

that may require immediate action in the present.
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Figure 4: Multi-task NN overpredicts Social Network la-

tency, due to the semantic gap between the QoS violation

probability, a value between 0 and 1, and the latency, a value

that is not strictly bounded.

An intuitive method for this are multi-task learning NNs that

predict the latency of the next interval, and the QoS violation prob-

ability in the next few intervals. However, the multi-task NN con-

siderably overpredicts tail latency and QoS violation probability,

as shown in Figure 4. Note that the gap between prediction and

ground truth does not indicate a constant difference, which could

be easily learned by NNs with strong overfitting capabilities. We

attribute the overestimation to interference caused by the semantic

gap between the QoS violation probability, a value between 0 and

1, and the latency, a value that is not strictly bounded.

To address this, we designed a two-stage model: first, a CNN

that predicts the end-to-end latency of the next timestep with high

accuracy, and, second, a Boosted Trees (BT) model that estimates

the probability for QoS violations further into the future, using

the latent variable extracted by CNN. BT is generally less prone to

overfitting than CNNs, since it has much fewer tunable hyperpa-

rameters than NNs; mainly the number of trees and tree depth. By

using two separate models, Sinan is able to optimize each model

for the respective objective, and avoid the overprediction issue of

using a joint, expensive model for both tasks. We refer to the CNN

model as the short-term latency predictor, and the BT model as the

long-term violation predictor.
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3.1 Latency Predictor

As discussed in Section 2.3, the CNN needs to account for both

the dependencies across microservices, and the timeseries pattern

of resource usage and application performance. Thus, both the

application topology and the timeseries information are encoded in

the input of the CNN. The input of the CNN includes the following

three parts:

(1) an łimagež (3D tensor) consisting of per-tier resource utiliza-

tionwithin a past timewindow. The y-axis of the łimagež cor-

responds to different microservices, with consecutive tiers in

adjacent rows, the x-axis corresponds to the timeseries, with

one timestep per column, and the z-axis (channels) corre-

sponds to resource metrics of different tiers, including CPU

usage, memory usage (resident set size and cache memory

size) and network usage (number of received and sent pack-

ets), which are all retrieved from Docker’s cgroup interface.

Per-request tracing is not required.

(2) a matrix of the end-to-end latency distribution within the

past time window, and

(3) the examined resource configuration for the next timestep,

which is also encoded as a matrix.

In each convolutional (Conv) layer of the CNN, a convolutional

kernel (𝑘 × 𝑘 window) processes information of 𝑘 adjacent tiers

within a time window containing 𝑘 timestamps. The first few Conv

layers in the CNN can thus infer the dependencies of their adjacent

tiers over a short time window, and later layers observe the entire

graph, and learn interactions across all tiers within the entire time

window of interest. The latent representations derived by the con-

volution layers are then post-processed together with the latency

and resource configuration information, through concatenation

and fully-connected (FC) layers to derive the latency predictions.

In the remainder of this section, we first discuss the details of the

network architecture, and then introduce a custom loss function

that improves the prediction accuracy by focusing on the most

important latency range.

As shown in Figure 5, the latency predictor takes as input the

resource usage history (𝑋𝑅𝐻 ), the latency history (𝑋𝐿𝐻 ), and the re-

source allocation under consideration for the next timestep (𝑋𝑅𝐶 ),

and predicts the end-to-end tail latencies (𝑦𝐿) (95
𝑡ℎ to 99𝑡ℎ per-

centiles) of the next timestep.

𝑋𝑅𝐻 is a 3D tensor whose x-axis is the 𝑁 tiers in the microser-

vices graph, the y-axis is 𝑇 timestamps (𝑇 > 1 accounts for the

non-Markovian nature of microservice graph), and channels are 𝐹

resource usage information related to CPU and memory. The set

of necessary and sufficient resource metrics is narrowed down via

feature selection.𝑋𝑅𝐶 and𝑋𝐿𝐻 are 2D matrices. For𝑋𝑅𝐶 , the x-axis

is the 𝑁 tiers and the y-axis the CPU limit. For 𝑋𝑅𝐻 , the x-axis is

𝑇 timestamps, and the y-axis are vectors of different latency per-

centiles (95𝑡ℎ to 99𝑡ℎ). The three inputs are individually processed

with Conv and FC layers, and then concatenated to form the latent

representation 𝐿𝑓 , from which the predicted tail latencies 𝐿𝑓 are

derived with another FC layer.

Figure 5: Sinan’s hybrid model, consisting of a CNN and a

Boosted Trees (BT) model. The CNN extracts the latent vari-

able (𝐿𝑓 ) and predicts the end-to-end latency (𝑦𝐿). The BT

take the latent variable and proposed resource allocation,

and predicts the probability of a QoS violation (𝑝𝑉 ).

The CNN minimizes the difference between predicted and actual

latency, using the squared loss function below:

L(𝑋,𝑦,𝑊 ) =

𝑛
∑

𝑖

(𝑦𝑖 − 𝑓𝑊 (𝑥𝑖 ))
2 (1)

where 𝑓𝑊 (·) represents the forward function of the CNN, 𝑦 is the

ground truth, and 𝑛 is the number of training samples. Given the

spiking behavior of interactive microservices that leads to very high

latency, the squared loss in Eq. 1 tends to overfit for training samples

with large end-to-end latency, leading to latency overestimation

in deployment. Since the latency predictor aims to find the best

resource allocation within a tail latency QoS target, the loss should

be biased towards training samples whose end-to-end latencies

are ≤ 𝑄𝑜𝑆 . Therefore, we use a scaling function to scale both the

predicted and actual end-to-end latency before applying the squared

loss function. The scaling function (𝜙 (·)) is:

𝜙 (𝑥) =

{

𝑥 𝑥 ≤ 𝑡

𝑡 + 𝑥−𝑡
1+𝛼 (𝑥−𝑡 )

𝑥 > 𝑡
(2)

where the latency range is (0, 𝑡), and the hyper-parameter 𝛼 can

be tuned for different decay effects. Figure 7 shows the scaling

function with 𝑡 = 100 and 𝛼 = 0.005, 0.01, 0.02. It is worth mention-

ing that scaling end-to-end latencies only mitigates overfitting of

the predicted latency for the next decision interval, and does not

improve predictions further into the future, as described above. We

implement all CNN models using MxNet [13], and trained them

with Stochastic Gradient Descent (SGD).

3.2 Violation Predictor

The violation predictor addresses the binary classification task of

predicting whether a given allocation will cause a QoS violation

further in the future, to filter out undesirable actions. Ensemble

methods are good candidates as they are less prone to overfitting.

We use Boosted Trees [34], which realizes an accurate non-linear

model by combining a series of simple regression trees. It models

the target as the sum of trees, each of which maps features to a

score. The final prediction is determined by accumulating scores

across all trees.
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Param Definition

k future timesteps in BT

T past timesteps in CNN&BT

N application tiers

M latency percentiles

F resource statistics

R allocated resources

Figure 6: ML model parame-

ters.
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Figure 7: Scale function

𝜙 (·) with different 𝑘 .
To further reduce the computational cost and memory footprint

of Boosted Trees, we reuse the compact latent variable 𝐿𝑓 extracted

from the CNN as its input. Moreover, since the latent variable 𝐿𝑓
is significantly smaller than 𝑋𝑅𝐶 , 𝑋𝑅𝐻 , and 𝑋𝐿𝐻 in dimensional-

ity, using 𝐿𝑓 as the input also makes the model more resistant to

overfitting.

Boosted Trees also takes resource allocations as input. During

inference, we simply use the same resource configuration for the

next 𝑘 timesteps to predict whether it will cause a QoS violation 𝑘

steps in the future. As shown in Figure 5, each tree leaf represents

either a violation or a non-violation with a continuous score. For

a given example, we sum the scores for all chosen violation (𝑠𝑉 )

and non-violation leaves (𝑠𝑉 ) from each tree. The output of BT is

the predicted probability of QoS violation (𝑝𝑉 ), which can be cal-

culated as 𝑝𝑉 =
𝑒𝑠𝑉

𝑒𝑠𝑉 +𝑒𝑠𝑁𝑉
. For the violation predictor we leverage

XGBoost [12], a gradient tree boosting framework that improves

scalability using sparsity-aware approximate split finding.

We first train the CNN and then BT using the extracted latent

variable from the CNN. The CNN parameters (number of layers,

channels per layer, weight decay etc.) and XGBoost (max tree depth)

are selected based on the validation accuracy.

4 SYSTEM DESIGN

We first introduce Sinan’s overall architecture, and then discuss the

data collection process, which is crucial to the effectiveness of the

ML models, and Sinan’s online scheduler.

4.1 System Architecture

Sinan consists of three components: a centralized scheduler, dis-

tributed operators deployed on each server/VM, and a prediction

service that hosts the ML models. Figure 8 shows an overview of

Sinan’s architecture.

ch

Figure 8: Sinan’s system architecture. As user requests are

being received, Sinan collects resource and performance

metrics throughDocker and Jaeger, inputs the collectedmet-

rics to theMLmodels, and uses themodels’ output to accord-

ingly allocate resources for each tier. Allocation decisions

are re-evaluated periodically online.

Sinan makes decisions periodically. In each 1s decision interval

(consistent with the granularity at which QoS is defined), the cen-

tralized scheduler queries the distributed operators to obtain the

CPU, memory, and network utilization of each tier in the previ-

ous interval. Resource usage is obtained from Docker’s monitoring

infrastructure, and only involves a few file reads, incurring neg-

ligible overheads. Aside from per-tier information, the scheduler

also queries the API gateway to get user load statistics from the

workload generator. The scheduler sends this data to the hybrid ML

model, which is responsible for evaluating the impact of different

resource allocations. Resource usage across replicas of the same tier

are averaged before being used as inputs to the models. Based on

the model’s output, Sinan chooses an allocation vector that meets

QoS using the least necessary resources, and communicates its

decision to the per-node agents for enforcement.

Sinan focuses on compute resources, which are most impactful

to microservice performance. Sinan explores sub-core allocations

in addition to allocating multiple cores per microservice to avoid

resource inefficiencies for non-resource demanding tiers, and enable

denser colocation.

4.2 Resource Allocation Space Exploration

Representative training data is key to the accuracy of anyMLmodel.

Ideally, test data encountered during online deployment should fol-

low the same distribution as the training dataset, so that covariate

shift is avoided. Specifically for our problem, the training dataset

needs to cover a sufficient spectrum of application behaviors that

are likely to occur during online deployment. Because Sinan tries to

meet QoS without sacrificing resource efficiency, it must efficiently

explore the boundary of the resource allocation space, where points

using the minimum amount of resources under QoS reside. We

design the data collection algorithm as a multi-armed bandit pro-

cess [27], where each tier is an independent arm, with the goal of

maximizing the knowledge of the relationship between resources

and end-to-end QoS.

The data collection algorithm approximates the running state

of the application with a tuple (𝑟𝑝𝑠, 𝑙𝑎𝑡cur, 𝑙𝑎𝑡diff), where 𝑟𝑝𝑠 is

the input requests per second, 𝑙𝑎𝑡cur is the current tail latency,

and 𝑙𝑎𝑡diff is the tail latency difference from the previous interval,

to capture the rate of consuming or accumulating queues. Every

tier is considered as an arm that can be played independently, by

adjusting its allocated resources. For each tier, we approximate

the mapping between its resources and the end-to-end QoS as

a Bernoulli distribution, with probability 𝑝 of meeting the end-

to-end QoS, and we define our information gain from assigning

certain amount of resources to a tier, as the expected reduction of

confidence interval of 𝑝 for the corresponding Bernoulli distribution.

At each step for every tier, we select the operation that maximizes

the information gain, as shown in Eq. 3, where 𝑜𝑝𝑠
𝑇
is an action

selected for tier 𝑇 at running state 𝑠 , 𝑛 are the samples collected

for the resulting resource assignment after applying 𝑜𝑝 on tier 𝑇 at

state 𝑠 , 𝑝 is the previously-estimated probability of meeting QoS,

and 𝑝+ and 𝑝− are the newly-estimated probabilities of meeting

QoS, when the new sample meets or violates QoS respectively. Each

operation’s score is multiplied by a predefined coefficient 𝐶𝑜𝑝 to

encourage meeting QoS and reducing overprovisioning.
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𝑜𝑝𝑠𝑇 = argmax
𝑜𝑝

𝐶𝑜𝑝 · (

√

𝑝 (1 − 𝑝)

𝑛
− 𝑝

√

𝑝+ (1 − 𝑝+)

𝑛 + 1

−(1 − 𝑝)

√

𝑝− (1 − 𝑝−)

𝑛 + 1
)

(3)

By choosing operations that maximize Equation. 3, the data col-

lection algorithm is incentivized to explore the boundary points

that meet QoS with the minimum resource amount, since exploring

allocations that definitely meet or violate QoS (with 𝑝 = 1 or 𝑝 = 0)

has at most 0 information gain. Instead, the algorithm prioritizes

exploring resource allocations whose impact on QoS is nondeter-

ministic, like those with 𝑝 = 0.5. It is also worth noting that the state

encoding and information gain definition are simplified approxima-

tions of the actual system, with the sole purpose of containing the

exploration process in the region of interest. Eventually, we rely on

ML to extract the state representation that incorporates inter-tier

dependencies in the microservice graph.

To prune the action space, Sinan enforces a few rules on both

data collection and online scheduling. First, the scheduler is only

allowed to select out of a predefined set of operations. Specifically

in our setting, the operations include reducing or increasing the

CPU allocation by 0.2 up to 1.0 CPU, and increasing or reducing

the total CPU allocation of a service by 10% or 30%. These ratios are

selected according to the AWS step scaling tutorial [4]; as long as

the granularity of CPU allocations does not change, other resource

ratios also work without retraining the model. Second, an upper

limit on CPU utilization is enforced on each tier, to avoid overly

aggressive resource downsizing that can lead to long queues and

dropped requests. Third, when end-to-end tail latency exceeds the

expected value, Sinan disables resource reclamations so that the

system can recover as soon as possible. A subtle difference from

online deployment is that the data collection algorithm explores

resource allocations in the [0, 𝑄𝑜𝑆 + 𝛼] tail latency region, where

𝛼 is a small value compared to QoS. The extra 𝛼 allows the data

collection process to explore allocations that cause slight QoS vio-

lations without the pressure of reverting to states that meet QoS

immediately, such that the ML models are aware of boundary cases,

and avoid them in deployment. In our setting 𝛼 is 20% of QoS empir-

ically, to adequately explore the allocation space, without causing

the tail latency distribution to deviate too much from values that

would be seen in deployment. Collecting data exclusively when the

system operates nominally, or randomly exploring the allocation

space does not fulfill these requirements.

Figure 9 shows the latency distribution in the training dataset,

and how the training and validation error of the model changes

with respect to the latency range observed in the training dataset,

for the Social Network application. In the second figure, the x-axis

is the latency of samples in the training dataset, the left y-axis is

the root mean squared error RMSE of the CNN, and the right y-axis

represents the classification error rate of XGBoost. Each point’s y-

axis value is the model’s training and validation error when trained

only with data whose latency is smaller than the corresponding

x-value. If the training dataset does not include any samples that

violate QoS (500ms), both the CNN and XGBoost experience serious

overfitting, greatly mispredicting latencies and QoS violations.

Figure 10 shows data collected using data collection mechanisms

that do not curate the dataset’s distribution. Specifically, we show
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Figure 9: Training dataset latency distribution andML train-

ing vs. validation error with respect to dataset latency range.

The training dataset includes an approximately balanced set

of samples between those that preserve and those that vio-

lateQoS. If the training dataset does not include any samples

that violate QoS (500ms), both the CNN and XGBoost experi-

ence serious overfitting, greatly mispredicting latencies and

QoS violations.

the prediction accuracy when the training dataset is collected when

autoscaling is in place (a common resource management scheme

in most clouds), and when resource allocations are explored ran-

domly. As expected, when using autoscaling, the model does not see

enough cases that violate QoS, and hence seriously underestimates

latency and causes large spikes in tail latency, forcing the scheduler

to use all available resources to prevent further violations. On the

other hand, when the model is trained using random profiling, it

constantly overestimates latency and prohibits any resource re-

duction, highlighting the importance of jointly designing the data

collection algorithms and the ML models.
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(a) Autoscaling data collection.
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(b) Random data collection.

Figure 10: Comparison of predicted and true latency with (a)

autoscaling and (b) random data collection schemes. When

using autoscaling, the model significantly underestimates

latency due to insufficient training samples of QoS viola-

tions, and causes large spikes in tail latency, forcing the

scheduler to use all available resources to prevent further vi-

olations. On the other hand,when themodel is trained using

random profiling, it constantly overestimates latency and

prohibits any resource reduction, leading to resource over-

provisioning.

Incremental and Transfer Learning: Incremental retraining can

be applied to accommodate changes to the deployment strategy or

microservice updates. In deployment, retraining can be triggered

periodically in the background or when prediction accuracy drops

below expected thresholds. In cases where the topology of the

microservice graph is not impacted, such as hardware updates and
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Table 1: Resource allocation actions in Sinan.

Category Actions

Scale Down Reduce CPU limit of 1 tier

Scale Down Batch
Reduce CPU limit of 𝑘 least utilized tiers,

(1 < 𝑘 ≤ 𝑁 )

Hold Keep current resource allocation

Scale Up Increase CPU limit of 1 tier

Scale Up All Increase CPU limit of all tiers

Scale Up Victim
Increase CPU limit of recent victim tiers,

that are scaled down in previous 𝑡 cycles

change of public cloud provider, transfer learning techniques such

as fine tune can be used to train the ML models in the background

with newly collected data. If the topology is changed, the CNN

needs to be modified to account for removed and newly-added

tiers.

Additional resources: Sinan can be extended to other system re-

sources. Several resources, such as network bandwidth and memory

capacity act like thresholds, below which performance degrades

dramatically, e.g., network bandwidth [11], or the application ex-

periences out of memory errors, and can be managed with much

simpler models, like setting fixed thresholds for memory usage,

or scaling proportionally with respect to user load for network

bandwidth.

4.3 Online Scheduler

During deployment, the scheduler evaluates resource allocations

using the ML models, and selects appropriate allocations that meet

the end-to-end QoS without overprovisioning.

Evaluating all potential resource allocations online would be pro-

hibitively expensive, especially for complexmicroservice topologies.

Instead, the scheduler evaluates a subset of allocations following

the set of heuristics shown in Table 1. For scaling down operations,

the scheduler evaluates reducing CPU allocations of single tiers,

and batches of tiers, e.g., scaling down the 𝑘 tiers with lowest cpu

utilization, 1 < 𝑘 ≤ 𝑁 , N being the number of tiers in the microser-

vice graph. When scaling up is needed, the scheduler examines the

impact of scaling up single tiers, all tiers, or the set of tiers that

were scaled down in the past 𝑡 decision intervals, 1 < 𝑡 < 𝑇 with 𝑇

chosen empirically. Finally, the scheduler also evaluates the impact

of maintaining the current resource assignment.

The scheduler first excludes operations whose predicted tail

latency is higher than𝑄𝑜𝑆 −𝑅𝑀𝑆𝐸𝑣𝑎𝑙𝑖𝑑 . Then it uses the predicted

violation probability to filter out risky operations, with two user-

defined thresholds, 𝑝𝑑 and 𝑝𝑢 (𝑝𝑑 < 𝑝𝑢 ). These thresholds are

similar to those used in autoscaling, where the lower threshold

triggers scaling down and the higher threshold scaling up; the

region between the two thresholds denotes stable operation, where

the current resource assignment is kept. Specifically, when the

violation probability of holding the current assignment is smaller

than 𝑝𝑢 , the operation is considered acceptable. Similarly, if there

exists a scale down operation with violation probability lower than

𝑝𝑑 , the scale down operation is also considered acceptable. When

the violation probability of the hold operation is larger than 𝑝𝑢 ,

only scaling up operations with violation probabilities smaller than

𝑝𝑢 are acceptable; if no such actions exist, all tiers are scaled up to

their max amount. We set 𝑝𝑢 such that the validation study’s false

negatives are no greater than 1% to eliminate QoS violations, and

𝑝𝑑 to a value smaller than 𝑝𝑢 that favors stable resource allocations,

so that resources do not fluctuate too frequently unless there are

significant fluctuations in utilization and/or user demand. Among

all acceptable operations, the scheduler selects the one requiring

the least resources.

The scheduler also has a safety mechanism for cases where the

ML model’s predicted latency or QoS violation probability deviate

significantly from the ground truth. If a mispredicted QoS viola-

tion occurs, Sinan immediately upscales the resources of all tiers.

Additionally, given a trust threshold for the model, whenever the

number of latency prediction errors or missed QoS violations ex-

ceeds the thresholds, the scheduler reduces its trust in the model,

and becomes more conservative when reclaiming resources. In

practice, Sinan never had to lower its trust to the ML model.

5 EVALUATION

We first evaluate Sinan’s accuracy, and training and inference time,

and compare it to other ML approaches. Second, we deploy Sinan on

our local cluster, and compare it against autoscaling [4], a widely-

deployed empirical technique to manage resources in production

clouds, and PowerChief [52], a resource manager for multi-stage

applications that uses queueing analysis. Third, we show the incre-

mental retraining overheads of Sinan. Fourth, we evaluate Sinan’s

scalability on a large-scale Google Compute Engine (GCE) cluster.

Finally, we discuss how interpretable ML can improve the manage-

ment of cloud systems.

5.1 Methodology

Benchmarks: We use the Hotel Reservation and Social Network

benchmarks described in Section 2.2. QoS targets are set with re-

spect to 99% end-to-end latency, 200ms for Hotel Reservation,

and 500ms for Social Network.

Deployment: Services are deployed with Docker Swarm, with

one microservices per container for deployment ease. Locust [3] is

used as the workload generator for all experiments.

Local cluster: The cluster has four 80-core servers, with 256GB of

RAM each. We collected 31302 and 58499 samples for Hotel Reser-

vation and Social Network respectively, using our data collection

process, and split them into training and validation sets with a 9:1

ratio, after random shuffling. The data collection agent runs for

16 hours and 8.7 hours for Social Network and Hotel Reservation

respectively, and collecting more training samples do not further

improve accuracy.

GCE cluster: We use 93 container instances on Google Compute

Engine (GCE) to run Social Network, with several replicas per

microservice tier. 5900 extra training samples are collected on GCE

for the transfer learning.

5.2 Sinan’s Accuracy and Speed

Table 2 compares the short-term ML model in Sinan (CNN) against

a multilayer perceptron (MLP), and a long short-term memory
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Table 2: RMSE, model size, and performance for three NNs Ð

Batch size is 2048. Initial learning rates for MLP, LSTM, and

CNN are 0.0001, 0.0005, and 0.001, respectively. All models

are trained with a single NVidia Titan Xp.

Apps Models
Train &Val.
RMSE (ms)

Model
size (KB)

Train & Inference
speed (ms/batch)

Hotel
Reservation

MLP 17.8 18.9 1433 1.9 3.7

LSTM 17.7 18.1 384 1.3 3.2

CNN 14.2 14.7 68 4.5 3.5

Social
Network

MLP 32.3 34.4 4300 6.4 5.9

LSTM 29.3 30.7 404 4.5 5.6

CNN 25.9 26.4 144 16.0 5.7

Table 3: The accuracy, number of trees, and total training

time of Boosted Trees using a single NVidia Titan Xp.

Apps
Train & Val.
accuracy (%)

Val. false
pos. & neg.

# of
trees

Total train
time (s)

Hotel
Reservation

94.4 94.1 3.2 3.1 229 2.3

Social
Network

95.5 94.6 3.4 2.0 239 6.5

(LSTM) network, which is traditionally geared towards timeseries

predictions. We rearrange the system history𝑋𝑅𝐻 to be a 2D tensor

with shape 𝑇 × (𝐹 ∗ 𝑁 ), and a 1D vector with shape 𝑇 ∗ 𝐹 ∗ 𝑁

for the LSTM and MLP models, respectively. To configure each

network’s parameters, we increase the number of fully-connected,

LSTM, and convolutional layers, as well as the number of channels

in each layer for the MLP, LSTM, and Sinan (CNN), until accuracy

levels off. Sinan’s CNN achieves the lowest RMSE, with the smallest

model size. Although the CNN is slightly slower than the LSTM, its

inference latency is within 1% of the decision interval (1s), which

does not delay online decisions.

Table 3 shows a similar validation study for the Boosted Trees

model. Specifically, we quantify the accuracy of anticipating a QoS

violation over the next 5 intervals (5s), and the number of trees

needed for each application. For both applications, the validation

accuracy is higher than 94%, demonstrating BT’s effectiveness in

predicting the performance evolution in the near future. Sinan al-

ways runs on a single NVidia Titan XP GPUwith average utilization

below 2%.

5.3 Performance and Resource Efficiency

We now evaluate Sinan’s ability to reduce resource consumption

while meeting QoS on the local cluster. We compare Sinan against

autoscaling and PowerChief [52]. We experimented with two au-

toscaling policies: AutoScaleOpt is configured according to [4],

which increases resources by 10% and 30%when utilization is within

[60%, 70%) and [70%, 100%] respectively, and reduces resources by

10% and 30% when utilization is within [30%, 40%) and [0%, 30%).

AutoScaleCons is more conservative and optimizes for QoS, us-

ing thresholds tuned for the examined applications. It increases

resources by 10% and 30% when utilization is within [30%, 50%)
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Figure 11: The mean and max CPU allocation, and the prob-

ability of meeting QoS for Sinan, Autoscaling, and Power-

Chief.

and [50%, 100%], and reduces resources by 10% when utilization is

within [0%, 10%). PowerChief is implemented as in [52], and esti-

mates the queue length and queueing time ahead of each tier using

network traces obtained through Docker.

For each service, we run 9 experiments with an increasing num-

ber of emulated users sending requests under a Poisson distribution

with 1 RPS mean arrival rate. Figure 11 shows the mean and max

CPU allocation, and the probability of meeting QoS across all stud-

ied mechanisms, where CPU allocation is the aggregate number

of CPUs assigned to all tiers averaged over time, the max CPU

allocation is the max of the aggregate CPU allocation over time,

and the probability of meeting QoS is the fraction of execution time

when end-to-end QoS is met.

For Hotel Reservation, only Sinan and AutoScaleCons meet QoS

at all times, with Sinan additionally reducing CPU usage by 25.9% on

average, and up to 46.0%. AutoScaleOpt onlymeets QoS at low loads,

when the number of users is no greater than 1900. At 2200 users,

AutoScaleOpt starts to violate QoS by 0.7%, and the probability of

meeting QoS drops to 90.3% at 2800 users, and less than 80% beyond
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Figure 12: (Top) RPS, latency, and allocated resources per tier with Sinan for Social Network with 250 users. (Bottom) RPC,

latency, and allocated resources per tier with diurnal load. For both scenarios, Sinan’s predicted latency closely follows the

end-to-end measured latency, avoiding QoS violations and excessive overprovisioning, while allocated resources per tier take

into account the impact of microservice dependencies on end-to-end performance.

3000 users. Similarly, PowerChief meets QoS for fewer than 2500

users, however the probability of meeting QoS drops to 50.8% at

2800 users, and never exceeds 40% beyond 3000 users. AutoScaleOpt

uses 53% the amount of resources Sinan requires on average, at the

price of performance unpredictability, and PowerChief uses 2.57×

more resources than Sinan despite violating QoS.

For the more complicated Social Network, Sinan’s performance

benefits are more pronounced. Once again, only Sinan and Au-

toScaleCons meet QoS across loads, while Sinan also reduces CPU

usage on average by 59.0% and up to 68.1%. Both AutoScaleOpt and

PowerChief only meet QoS for fewer than 150 users, despite using

on average 1.26× and up to 3.75× the resources Sinan needs. For

higher loads, PowerChief’s QoS meeting probability is at most 20%

above 150 users, and AutoscaleOpt’s QoS meeting probability starts

at 76.3% for 200 users, and decreases to 8.7% for 350 users.

By reducing both the average and max CPU allocation, Sinan can

yield more resources to colocated tasks, improving the machine’s

effective utilization [11, 19, 32, 33]. There are three reasons why

PowerChief cannot reduce resources similarly and leads to QoS

violations. First, as discussed in Sec. 2.3, the complex topology of

microservices means that the tier with the longest igress queue,

which PowerChief signals as the source of performance issues, is

not necessarily the culprit but a symptom. Second, in interactive ap-

plications, queueing takes place across the system stack, including

the NIC, OS kernel, network processing, and application, making

precise queueing time estimations challenging, especially when

tracing uses sampling. Finally, the stricter latency targets of mi-

croservices, compared to traditional cloud services, indicate that

small fluctuations in queueing time can result in major QoS viola-

tions due to imperfect pipelining across tiers causing backpressure

to amplify across the system.

Figure 12 shows the detailed results for Social Network, for 300

concurrent users under a diurnal load. The three columns each show

requests per second (RPS), predicted latency vs. real latency and

predicted QoS violation probability, and the realtime CPU allocation.

As shown, Sinan’s tail latency prediction closely follows the ground

truth, and is able to react rapidly to fluctuations in the input load.

5.4 Incremental Retraining

We show the incremental retraining overheads of Sinan’s ML mod-

els in three different deployment scenarios with the Social Network

applications: switching to new server platforms (from the local

cluster to a GCE cluster), changing the number of replicas (scale

out factor) for all microservices except the backend databases (to

avoid data migration overheads), and modifying the application

design by introducing encryption in post messages uploaded by

users (posts are encrypted with AES [15] before being stored in the

databases). Instead of retraining the ML models from scratch, we

use the previously-trained models on the local cluster, and fine-tune

them using a small amount of newly-collected data, with the initial

learning rate 𝜆 being 1×10−5, 1
100 of the original 𝜆 value, in order to

preserve the learnt weights in the original model and constrain the

new solution derived by the SGD algorithm to be in a nearby region

of the original one. The results are shown in Figure 13, in which the

y-axis is the RMSE and the x-axis is the number of newly-collected

training samples (unit being 1000). The RMSE values with zero

new training samples correspond to the original model’s accuracy

on the newly collected training and validation set. In all three sce-

narios the training and validation RMSE converge, showing that

incremental retraining in Sinan achieves high accuracy, without

the overhead of retraining the entire model from scratch.

In terms of new server platforms and different replica numbers,

the original model already achieve a RMSE of 33.23ms and 33.1ms

correspondingly, showing the generalizability of selected input

features. The RMSE of original model, when directly applied to the

modified application, is higher compared to the two other cases,

176



Sinan: ML-Based and QoS-Aware Resource Management for Cloud Microservices ASPLOS ’21, April 19–23, 2021, Virtual, USA

Figure 13: Training & validation RMSE of Fine-tunned

CNNs with different amounts of samples.
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Figure 14: Comparison of the average CPU allocation of four

request mixes for Social Network on GCE.

reaching 40.56ms. In all of the three cases, the validation RMSE is

siginificantly reduced with 1000 newly collected training samples

(shown by the dotted lines in each figure), which translates to 16.7

minutes of profiling time. The case of GCE, different replica number

and modified application stabilize with 5900 samples (1.6 hours of

profiling), 1800 samples (0.5 hour of profiling) and 5300 samples

(1.5 hours of profiling), and achieve training vs. validation RMSE

of 24.8ms vs. 25.2ms, 27.5ms vs. 28.2ms, and 28.4ms vs. 28.3ms

correspondingly.

5.5 Sinan’s Scalability

We now show Sinan’s scalability on GCE running Social Network.

We use the fine-tuned model described in Section 5.4. Apart from

the CNN, XGBoost achieves training and validation accuracy of

96.1% and 95.0%. The model’s size and speed remain unchanged,

since they share the same architecture with the local cluster models.

To further test Sinan’s robustness to workload changes, we ex-

perimented with four workloads for Social Network, by varying

request types. Some requests, like ComposePost involve the major-

ity of microservices, and hence are more resource intensive, while

others, like ReadUserTimeline involve a much smaller number of

tiers, and are easier to allocate resources for. We vary the ratio of

ComposePost:ReadHomeTimeline:ReadUserTimeline requests; the

ratios of the𝑊 0,𝑊 1,𝑊 2 and𝑊 3 workloads are 5:80:15, 10:80:10,

1:90:9, and 5:70:25, where𝑊 0 has the same ratio as the training set.

The ratios are representative of different social media engagement

scenarios [41]. The average CPU allocation and tail latency distri-

bution are shown in Figure 14 and Figure 15. Sinan always meets

QoS, adjusting resources accordingly.𝑊 1 requires the max com-

pute resources (170 vCPUs for 450 users), because of the highest

number of ComposePost requests, which trigger compute-intensive

ML microservices.

5.6 Explainable ML

For users to trust ML, it is important to interpret its output with

respect to the system it manages, instead of treating ML as a black

box. We are specifically interested in understanding what makes

Figure 15: 99𝑡ℎ percentile latency distribution for fourwork-

load types of Social Network on GCE, managed by Sinan.

some features in the model more important than others. The bene-

fits are threefold: 1) debugging the models; 2) identifying and fixing

performance issues; 3) filtering out spurious features to reduce

model size and speed up inference.

5.6.1 Interpretability Methods. For the CNN model, we adopt the

widely-used ML interpretability approach LIME [40]. LIME inter-

prets NNs by identifying their key input features which contribute

most to predictions. Given an input 𝑋 , LIME perturbs 𝑋 to obtain a

set of artificial samples which are close to 𝑋 in the feature space.

Then, LIME classifies the perturbed samples with the NN, and uses

the labeled data to fit a linear regression model. Given that linear

regression is easy to interpret, LIME uses it to identify important

features based on the regression parameters. Since we are mainly

interested in understanding the culprit of the QoS violations, we

choose samples 𝑋 from the timesteps where QoS violations occur.

We perturb the features of a given tier or resource by multiplying

that feature with different constants. For example, to study the

importance of MongoDB, we multiply its utilization history with

two constants 0.5 and 0.7, and generate multiple perturbed samples.

Then, we construct a dataset with all perturbed and original data

to train the linear regression model. Last, we rank the importance

of each feature by summing the value of their associated weights.

5.6.2 Interpreting the CNN. We used LIME to correct performance

issues in Social Network [26], where tail latency experienced pe-

riods of spikes and instability despite the low load, as shown by

the red line in Figure 16. Manual debugging is cumbersome, as it

requires delving into each tier, and potentially combinations of

tiers to identify the root cause. Instead, we leverage explainable

ML to filter the search space. First, we identify the top-5 most im-

portant tiers; the results are shown in the w/ Sync part of Table 4.

We find that the most important tier for the model’s prediction is

social-graph Redis, instead of tiers with heavy CPU utilization, like

nginx.

We then examine the importance of each resource metric for

Redis, and find that themostmeaningful resources are cache and res-

ident working set size, which correspond to data from disk cached

in memory, and non-cached memory, including stacks and heaps.

Using these hints, we check the memory configuration and statis-

tics of Redis, and identify that it is set to record logs in persistent

storage every minute. For each operation, Redis forks a new process

and copies all written memory to disk; during this it stops serving

requests.
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Table 4: Top-5 most critical tiers and resources for QoS

with/without log synchronization in Social Network Ð SGrf

and WUsr are social graph and write user, respectively.

w/
Sync

Tiers
SGrf
Redis

post
storage

WUsr
timeline

SGrf
MongoDB

SGrf

Weights 5109.9 1609.8 1503.1 849.7 482.7

Resource
utilization

cache
memory

RSS # of cores
CPU

utilization
received
packets

Weights 15181.9 1576.1 658.5 322.7 20.0

w/o
Sync

Tiers
WUsr

timeline
WUsr

rabbitmq
SGrf

MongoDB
SGrf

SGrf
Redis

Weights 3948.6 3601.6 1794.0 600.9 451.7
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Figure 16: Tail latency for the Social Network application

when Redis’s logging is enabled (red) and disabled (blue).

Sinan identified Redis as the source of unpredictable perfor-

mance, and additionally determined the resources that were

being saturated, pointing to the issue being in Redis’s log-

ging functionality. Disabling logging significanly improved

performance, which is also reflected in that tier’s impor-

tance, as far as meeting QoS is concerned, being reduced.

Disabling the log persistence eliminated most of the latency

spikes, as shown by the blue line in Figure 16. We further analyze

feature importance in themodel trainedwith data from themodified

Social Network, and find that the importance of social-graph Redis

is significantly reduced, as shown in the w/o Sync part of Table 4,

in agreement with our observation that the service’s tail latency is

no longer sensitive to that tier.

6 RELATED WORK

We now review related work on microservices, cloud management,

and the use of machine learning in cloud systems.

Microservices: The emergence of microservices has prompted

recent work to study their characteristics and system implica-

tions [24, 26, 38]. DeathstarBench [26] and uSuite [46] are two

representative microservice benchmark suites. DeathStarBench in-

cludes several end-to-end applications built with microservices, and

explores the system implications of microservices in terms of server

design, network and OS overheads, cluster management, program-

ming frameworks, and tail at scale effects. uSuite also introduces

a number of multi-tier applications built with microservices and

studies their performance and resource characteristics. Urgaonkar

et al. [50] introduced analytical modeling to multi-tier applications,

which accurately captured the impact of aspects like concurrency

limits and caching policies. The takeaway of all these studies is that,

despite their benefits, microservices change several assumptions

current cloud infrastructures are designed with, introducing new

system challenges both in hardware and software.

In terms of resource management, Wechat [53] manages mi-

croservices with overload control, by matching the throughput of

the upstream and downstream services; PowerChief [52] dynami-

cally power boosts bottleneck services in multi-phase applications,

and Suresh et al. [47] leverage overload control and adopt deadline-

based scheduling to improve tail latency in multi-tier workloads.

Finally, Sriraman et al. [45] present an autotuning framework for

microservice concurrency, and show the impact of threading deci-

sions on application performance and responsiveness.

Cloud resource management: The prevalence of cloud comput-

ing has motivated many cluster management designs. Quasar [18,

19], Mesos [29], Torque [49], and Omega [43] all target resource al-

location in large, multi-tenant clusters. Quasar [19] is a QoS-aware

cluster manager that leverages machine learning to identify the

resource preferences of new, unknown applications, and allocate

resources in a way that meets their performance requirements

without sacrificing resource efficiency. Mesos [29] is a two-level

scheduler that makes resource offers to different tenants, while

Omega [43] uses a shared-state approach to scale to larger clusters.

More recently, PARTIES [11] leveraged the intuition that resources

are fungible to co-locate multiple interactive services on a server,

using resource partitioning. Autoscaling [37] is the industry stan-

dard for elastically scaling allocations based on utilization [8ś10].

While all these systems improve the performance and/or resource

efficiency of the cloud infrastructures they manage, they are de-

signed for monolithic applications, or services with a few tiers, and

cannot be directly applied to microservices.

ML in cloud systems: There has been growing interest in leverag-

ing ML to tackle system problems, especially resource management.

Quasar leverages collaborative filtering to identify appropriate re-

source allocations for unknown jobs. Autopilot [42] uses an ensem-

ble of models to infer efficient CPU and memory job configurations.

Resource central [14] characterizes VM instance behavior and trains

a set of ML models offline, which accurately predict CPU utilization,

deployment size, lifetime, etc. using random forests and boosting

trees. Finally, Seer [25] presented a performance debugging system

for microservices, which leverages deep learning to identify pat-

terns of common performance issues and to help locate and resolve

them.

7 CONCLUSION

We have presented Sinan, a scalable and QoS-aware resource man-

ager for interactive microservices. Sinan highlights the challenges

of managing complex microservices, and leverages a set of validated

MLmodels to infer the impact allocations have on end-to-end tail la-

tency. Sinan operates online and adjusts its decisions to account for

application changes. We have evaluated Sinan both on local clusters

and public clouds GCE) across different microservices, and showed

that it meets QoS without sacrificing resource efficiency. Sinan

highlights the importance of automated, data-driven approaches

that manage the cloud’s complexity in a practical way.
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A ARTIFACT APPENDIX

A.1 Abstract

This appendix contains the information needed to reproduce the

main experiments in Sinan, which include the results for the on-

line resource management deployment. The results reproduced

during the artifact evaluation process used the large-scale

google compute (GCP) version of the artifact, due to the ex-

perimental setting for the local version being difficult to reproduce

on a different cluster equipment and topology.

A.2 Artifact Checklist (meta-information)

• Algorithm: An algorithm for generating training data that

is used by Sinan to determine per-microservices resource

allocations.

• Program: Modified version of the DeathstarBench suite;

focusing on the Social Network and Hotel Reservation ap-

plications.

• Model: Included in the artifact.

• Data set: Scripts for generating the training dataset are

included with the artifact.

• Run-time environment: 1. Google Cloud Platform (GCP)

experiments: Google Cloud SDK is required. 2. Local experi-

ments: Ubuntu 18.04, docker 19.03, docker-ce 20.10, MXnet

and XGBoost are required.

• Hardware: Local experiments: a cluster with at least two

servers, each with 88 cores (Intel E5-2660 v3@2.60GHz) for

service deployment, and a GPU server (a NVidia Titan XP

GPU) for model training and online inference. For the pur-

pose of reproducing the paper’s results, a cluster with at

least an equal amount of resources to those specified above

is recommended to avoid cross-tier interference.

• Execution: 1. Google Cloud Platform (GCP) experiments:

deployment experiments take approximately 4 hours for the

provided applications. 2. Local experiments: data collection

takes 16 hours for Social Network and 9 hours for Hotel

Reservation. Deployment experiments take around 4 hours

for each application.

• Metrics: CPU usage and end-to-end tail latencies, collected

periodically over the execution’s duration.

• Output: Execution logs of the system’s performance and re-

source utilization, including the CPU usage and tail latencies

previously mentioned. Log processing scripts are included

in the artifact.

• Experiments: Short cut scripts for reproducing results are

included in the artifact.

• Publicly available: Yes

• Archived: 10.5281/zenodo.4537132

A.3 Description

A.3.1 How to Access. Please visit https://github.com/zyqCSL/sinan-

gcp for the software implementation needed for the Google Cloud

Platform (GCP) experiments, and https://github.com/zyqCSL/sinan-

local for the software implementation needed for the local experi-

ments.

A.3.2 Hardware Dependencies. For local experiments, we provide

a configuration using two servers each with 88 cores (Intel E5-2660

v3@2.60GHz) to deploy the applications Sinan is evaluated with.

A GPU server (a NVidia Titan XP GPU) is also required for model

training and online inference. In order to reproduce the results

locally, a cluster with no less CPU resources than the ones described

above is recommended. If fewer resources are availale, you will need

to lower the input load using the provided workload generators,

and scale down each microservice’s container accordingly.

A.3.3 Software Dependencies. For experiments on Google Cloud

Platform (GCP), the Google Cloud SDK is required. For local exper-

iments, Ubuntu 18.04, docker 19.03, docker-ce 20.10, MXnet and

XGBoost are required.

A.3.4 Datasets. The scripts to generate the datasets used for train-

ing Sinan are included in the artifact. Information on how to use

the scripts is included in the artifact’s README file.

A.3.5 Models. The models are included in the subumitted repo.

Please check the README of the artifact for more information.

A.4 Installation

For the Google Cloud Platform (GCP) experiments, Google Cloud

SDK is required. Please follow the guidelines in https://cloud.google.

com/sdk/docs/how-to to install it. Initialization and software de-

pendencies are automatically installed using the VM setup scripts

provided in the artifact. For the local experiments, please use servers

with Ubuntu 18.04, docker 19.03 and docker-ce 20.10 installed.

Sinan’s inference engine also requires MXNet and XGBoost in-

stalled. For interested readers, we refer you to the README of the

local version of the artifact for more details.

A.5 Experiment Workflow

The workflow first generates the training dataset used by Sinan

to infer per-tier resource allocations. It then deploys the target

application on the local or Google Compute Platform (GCP) cluster,

and launches Sinan’s inference engine on the GPU server, which

continuously determines the probabilities for QoS violations, and

the required resource allocations per microservice. Please check

the README of the artifact for more details on the experiment

workflow.

A.6 Evaluation and Expected Results

The expected results are execution logs of the system, which in-

cludes CPU usage and end-to-end tail latencies of the managed
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applications, collected periodically over time. The data processing

scripts are included in the artifact, and are responsible for comput-

ing the average CPU usage and tail latency distribution throughout

the duration of an experiment. They also generate the figures show-

ing the CPU usage and end-to-end tail latency over time. Expected

results are shown in the paper. Specifically, for Google Cloud Plat-

form (GCP) experiments, please check Figure 14 and Figure 15 for

the average CPU measurements and the tail latency distributions.

For the local experiments, please check the data labeled with łSinanž

in Figure 11. Results for the diurnal pattern can be compared against

Figure 12 in the paper.
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