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Abstract—Approximate computing is an emerging paradigm
for error-tolerant applications. By introducing a reasonable
amount of inaccuracy, both the area and delay of a circuit can
be reduced significantly. To produce approximate circuits auto-
matically, many approximate logic synthesis (ALS) algorithms
are proposed. However, they mainly focus on area reduction
and are not optimal in reducing the circuit delay. In this paper,
we propose HEDALS, a highly efficient delay-driven ALS
framework, which supports various types of local approximate
changes (LACs), circuit representations, and average error
metrics. To reduce delay, HEDALS builds a critical error
graph (CEG) consisting of nodes on the critical paths and
error information, and finds an optimized set of LACs in the
CEG by either a maximum flow-based method or a priority
cut-based method. The resulting set of LACs is applied to
shorten all critical paths simultaneously so that the circuit
delay is reduced. Besides, the simultaneous application of
multiple LACs also makes HEDALS extremely fast. Compared
to a state-of-the-art method, on average, HEDALS can reduce
the circuit delay by 32.3%, while being 167× faster. The code
of HEDALS is made open-source.

Index Terms—approximate logic synthesis, approximate
computing, delay optimization, maximum flow, priority cut

I. INTRODUCTION

As the transistor size shrinks into nanoscale, it has
been increasingly difficult to improve the performance and
energy consumption of circuits by conventional design
methods [1]. In addition, many recent applications are
error-tolerant by their nature, such as machine learning,
image processing, and multimedia. Under this circumstance,
approximate computing was proposed as a novel circuit
design paradigm [2]. Its basic idea is to modify the function
of a target circuit without affecting its functionality at the
application level. With carefully designed modifications,
the resulting circuit will have a smaller area, delay, and
power than the original version. To generate approximate
circuits automatically, approximate logic synthesis (ALS)
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approaches are proposed, seeking to synthesize an op-
timized approximate circuit that satisfies a given error
constraint.

Significant progress has been made in ALS in recent
years [3]–[11], most of which mainly focused on reducing
the circuit area. Although delay is usually also decreased
as a byproduct of these ALS methods, the potential of
ALS in optimizing delay has not been fully explored.
Meanwhile, many error-tolerant applications have stringent
timing constraints, such as real-time signal processing.
For them, delay, instead of area, is the primary concern.
Therefore, a delay-oriented ALS flow is preferred for these
applications.

Given the difficulty in optimizing approximate circuits
globally, existing ALS methods usually repeatedly apply
local approximate changes (LACs) to the nodes in a circuit,
such as replacing nodes by constant 0s or 1s, until the given
error constraint is reached. In these methods, where area
is the primary optimization target, all nodes in a circuit
are treated as candidates for approximation, since they
contribute to the area equally regardless of their locations.
However, it is not the case for delay optimization. Circuit
delay is determined by the critical paths. Thus, instead of
considering all nodes in a circuit, effort should be put into
the nodes on the critical paths. Furthermore, even approxi-
mating some nodes on the critical paths may be ineffective,
as there may exist multiple critical paths with the same
delay. If the approximation only reduces the delays of some,
but not all, critical paths, the overall circuit delay remains
unchanged. Instead, a better choice to reduce the circuit
delay is to shorten all the critical paths simultaneously.

To address the above issues, we propose HEDALS, a
highly efficient delay-driven approximate logic synthesis
framework. To effectively reduce the delay, it only focuses
on the nodes on the critical paths and only considers
the LACs applied on these nodes. Moreover, it selects an
optimized set of LACs and applies them simultaneously to
the circuit so that all the critical paths are shortened, while
the induced error is minimized.

Our main contributions are as follows:

1) To facilitate the finding of an optimized set of LACs
that can reduce the circuit delay, while minimizing the
induced error, we propose a novel data structure called
critical error graph (CEG).

2) We propose a maximum flow-based method to find
an optimized LAC set with the help of CEG and an
efficient model to estimate the error caused by a set of
LACs.

3) We propose a priority cut-based method to further
improve the LAC set found by the maximum flow-
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based method.
4) Based on the above techniques, we propose HEDALS,

a delay-oriented ALS framework supporting various
LAC types, circuit representations, and average error
metrics.

The experimental results show that HEDALS can rapidly
synthesize approximate circuits with significantly reduced
delays. Besides, it has good scalability and wide appli-
cability in terms of the supported LAC types, circuit
representations, and error metrics. Compared to a state-
of-the-art method, on average, HEDALS can reduce the
circuit delay by 32.3%, while being 167× faster. The code
of HEDALS is made open-source at https://github.com/
SJTU-ECTL/HEDALS.

A preliminary version of this work was published in [12].
Compared to it, this work improves the error estima-
tion model used in the maximum flow-based method.
Furthermore, we propose a more effective priority cut-
based method to find an optimized LAC set, leading to
an improved circuit quality. Also, we conduct extensive
experimental studies to demonstrate the scalability and wide
applicability of HEDALS.

The rest of the paper is organized as follows. Section II
discusses the related works. Section III introduces the
background. Sections IV–VI first overview the HEDALS
framework and then present its details. Section VII shows
the experimental results. Finally, Section VIII concludes the
paper.

II. RELATED WORKS

This section reviews some recent advances in ALS. A
more comprehensive survey can be found in [13].

Most existing ALS works focus on area optimization [3]–
[9]. They simplify the circuit by applying LACs, which
are local modifications on sub-circuits. Shin and Gupta
proposed a LAC that replaces a node in the circuit by a
constant 0 or 1, which can be further propagated to simplify
both the transitive fanin and fanout cones of the node for
further area reduction [3]. Venkataramani et al. proposed a
LAC that substitutes a node u in the circuit with another
node v or its negation [4]. Then, the maximum fanout-free
cone (MFFC) [14] of node u can be removed to reduce area.
Wu and Qian proposed an approximate node simplification
technique [5]. Its LAC is deleting some literals from the
Boolean expression of a node in the circuit, which can lead
to area reduction after technology mapping. Liu and Zhang
proposed a stochastic ALS framework including some sim-
ple LACs like removing a gate and adding a gate [6]. Meng
et al. proposed an ALS flow called ALSRAC [7]. Its LAC
is approximately resubstituting a target node in the circuit
by a new function on some existing nodes in the circuit.
Then, removing the MFFC of the target node leads to area
reduction. Witschen et al. formulated the ALS problem as
a minimal unsatisfiable subset problem for solving [8]. Its
LAC is also replacing a node in the circuit by a constant
0 or 1 [3]. Ma et al. proposed an ALS method called
BLASYS [9]. Its LAC is approximately decomposing a sub-
circuit into two smaller units, i.e., a compressor and a
decompressor, by Boolean matrix factorization. We note
that HEDALS can handle all the above LACs except the
one proposed in [9]. Their common feature is that they

modify a sub-circuit with a single output. However, the
LAC proposed in [9] affects a sub-circuit that may have
multiple outputs, and it is not supported by HEDALS.

There are also few works that can directly reduce the
delay of approximate circuits [10], [11]. In [10], Venkatara-
mani et al. proposed an ALS method called SALSA. It
identifies the don’t cares based on the error constraint and
then converts the ALS problem into a traditional logic
synthesis problem with don’t cares. If a traditional delay-
oriented logic synthesis method is applied, then the delay of
the approximate circuit will be reduced. However, SALSA
is not applicable to large circuits with many primary inputs
(PIs), since the don’t cares are expressed in terms of PIs,
and a large circuit may have an enormous number of such
don’t cares. In [11], Chandrasekharan et al. proposed an
ALS method based on rewriting of AND-inverter graph
(AIG). To reduce the delay, for each critical path in an AIG,
a cut of a node is selected and rewritten with a constant 0.
Although this change shortens the critical path where the
node locates, the delay of the other critical paths may keep
the same. Besides, the selection of the cut is solely based
on the cut size without considering the error induced by the
change. Thus, it may select a sub-optimal LAC.

Compared to the above works that can directly reduce
the circuit delay, HEDALS is a scalable framework that
can handle large circuits. In addition, it selects a set of
cuts on the critical paths for approximation to ensure delay
reduction. Furthermore, it applies a more sophisticated
strategy for cut selection by taking the introduced errors
into account.

III. BACKGROUND

In this section, we introduce the background of HEDALS.

A. Circuit Terminologies

We focus on multi-level combinational circuits, which
can be modeled as a directed acyclic graph. In a circuit,
a PI is a node without any fanin. A functional node is a
node performing logic operations. A PO is a dummy node
driven by a functional node or a PI. It has a single fanin
and no fanout. A path is a sequence of connected nodes in
the circuit.

A circuit can be represented in various forms. In an
AIG, functional nodes are two-input AND gates, and edges
can be either complemented or non-complemented, where a
complemented edge indicates the negation of the signal. For
example, Fig. 1 shows an AIG with 5 PIs x0, x1, . . . , x4,
6 functional nodes (two-input AND gates) n0, n1, . . . , n5,
and 2 POs y0 and y1. In a majority-inverter graph (MIG),
functional nodes are three-input majority nodes, and edges
can also be either complemented or non-complemented. In
a lookup table (LUT) network, which is the underlying
representation for an FPGA design, functional nodes are
LUTs. In a gate netlist, functional nodes are gates. For
both LUT network and gate netlist, edges can only be non-
complemented. HEDALS supports the above commonly-
used circuit representations.

B. Circuit Timing

In this work, when calculating delays, we only con-
sider node delays and ignore wire delays. The method
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Fig. 1. An example circuit in the AIG representation, where all the edges
are non-complemented. The ATs of the nodes are marked in blue. The red
nodes are on the critical paths.

of calculating the node delay varies for different circuit
representations. In AIGs, MIGs, and LUT networks, the
node delay is set as 1. In gate netlists, where each node is a
gate from a standard cell library, the delay of a node can be
looked up from the library according to its input transition
time and output capacitance. The arrival time (AT) of a
node is the largest delay of all paths from a PI to the node. A
path from a PI to a PO with the maximum delay is a critical
path, and the maximum delay is the circuit delay. Note that
a circuit can have multiple critical paths. For example, for
the AIG in Fig. 1, the AT of each node is shown in blue, and
the red nodes are on the critical paths. This AIG has more
than one critical path. The ATs, circuit delay, and critical
paths can be obtained by static timing analysis (STA) [15].

C. Error Metrics

Among the various error metrics for evaluating the accu-
racy of approximate circuits, HEDALS supports commonly-
used average error metrics. Let y : BI → BO and
ŷ : BI → BO be the multiple-output Boolean functions
of an exact circuit and an approximate circuit, respectively.
Assume that the numbers of PIs and POs of the circuits are
I and O, respectively. The average error is defined as the
average deviation between y and ŷ over all input patterns:

average error =
∑
x∈BI

D(y(x), ŷ(x)) · p(x),

where y(x) and ŷ(x) are binary vectors of length O,
denoting the outputs of the exact and the approximate
circuits under the input pattern x, respectively, p(x) is the
occurring probability of the pattern x, and D is a distance
function measuring the deviation between y and ŷ.

Typical average errors include error rate (ER), mean er-
ror distance (MED), and mean Hamming distance (MHD).
ER is the probability of an input pattern producing a wrong
output for the approximate circuit. Its distance function
DER(y, ŷ) = 1 if y ̸= ŷ and 0 otherwise.

MED is the mean absolute difference between the numer-
ical values encoded by the outputs of exact and approximate
circuits. Its distance function is

DMED(y, ŷ) = |int(y)− int(ŷ)| ,
where the function int(v) returns the integer encoded by the
binary vector v. MHD is the average number of bit-flips in
ŷ with respect to the original y. Its distance function is

DMHD(y, ŷ) =

O−1∑
i=0

|yi − ŷi| ,

where yi and ŷi ∈ {0, 1} denote the i-th PO of the exact
and the approximate circuits, respectively.

Average errors are usually estimated with Monte Carlo
simulation by sampling a set of M input patterns X =
{x1,x2, . . . ,xM}. That is,

average error ≈ 1

M

∑
x∈X

D(y(x), ŷ(x)).

In addition, the normalized MED (NMED) and normal-
ized MHD (NMHD) are defined as follows:

NMED =
MED
2O − 1

,NMHD =
MHD
O

.

IV. OVERVIEW OF HEDALS

Given an exact circuit, HEDALS aims at synthesizing
an approximate circuit with reduced delay without increas-
ing its area. Notably, the circuit can be represented in a
commonly-used form such as AIG, MIG, LUT network,
and gate netlist. The error constraint can be any average
error constraint, such as ER, MED, and MHD.

Algorithm 1: The procedure of HEDALS.
Input: an exact circuit G and an error upper bound eb.
Output: an approximate circuit Gapx with an error ≤ eb.

1 Gapx ⇐ G; HasSol ⇐ true;
2 while HasSol do ▷ can further reduce delay
3 (HasSol, Gapx) ⇐ FindApplyOptLACSet(Gapx, eb);
4 Gapx ⇐ SynthesizeAndMap(Gapx);
5 return Gapx;

The overall flow of HEDALS is shown in Algorithm 1.
Its inputs are an exact circuit G and an error upper bound
eb. It outputs an approximate circuit Gapx with an error
not exceeding eb. Line 1 initializes the approximate circuit
Gapx as the exact circuit G and a Boolean variable HasSol
as true. Then, Lines 2–3 iteratively apply sets of LACs
to simplify the approximate circuit Gapx. Finally, Line 4
applies traditional delay-oriented logic synthesis and tech-
nology mapping to produce a mapped approximate circuit
Gapx, which is then returned (Line 5).

In each iteration, the function FindApplyOptLACSet is
called to do the simplification (Line 3). Its main task is to
find a set of LACs, marked as L, and apply them to the
approximate circuit Gapx so that the circuit delay decreases
by some amount. For a LAC set C, we use Error(C) to
denote the error of the approximate circuit obtained by
applying the LACs in set C. We also refer to it as the error of
the LAC set C. Since the LAC set L found in each iteration
reduces the circuit delay by some amount, to minimize the
delay of the final approximate circuit, a good heuristic is to
maximize the number of iterations. To achieve this, we aim
at minimizing the error of the LAC set L in each iteration.
Thus, we formulate a problem as follows:

Problem 1 Given the set L of all possible LAC sets in an
approximate circuit Gapx, find the LAC set L ∈ L with the
minimum error, while also satisfies that

1) after applying all LACs in L, the circuit delay is
reduced;

2) Error(L) is no more than the error bound eb.

Note that the solution space of Problem 1 is very large,
since it includes all possible LAC sets in the approximate
circuit Gapx. On the one hand, there are many sets of nodes
in a circuit, on which LACs can be identified. On the other
hand, even for a certain node set, there are many ways of
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introducing LACs to the nodes in the set, since each node
in the set generally has multiple LACs.

The function FindApplyOptLACSet provides an efficient
solution to Problem 1. To reduce the solution space, it
exploits a novel data structure, critical error graph (CEG),
which will be elaborated in Section V. Using the CEG, we
propose two implementations of FindApplyOptLACSet to
solve Problem 1, i.e., a maximum flow-based method and a
priority cut-based method. Their details will be described in
Section VI. Both methods first pre-process the current ap-
proximate circuit and then find an optimized LAC set from
the pre-processed circuit. If an optimized set L is found,
then the function FindApplyOptLACSet sets the variable
HasSol to true, applies all LACs in L to simplify the pre-
processed circuit, and returns the resulting circuit (Line 3).
However, it is also possible that for a pre-processed circuit,
no LAC set satisfying the conditions in Problem 1 can be
found. Then, the function FindApplyOptLACSet sets HasSol
to false and returns the pre-processed circuit. In this case,
the loop is terminated.

V. CRITICAL ERROR GRAPH

This section presents the details of CEG, which is a key
data structure used in the function FindApplyOptLACSet.
Since the solution to Problem 1 should be a LAC set
that can reduce the circuit delay, we first analyze which
LAC sets can achieve this in Section V-A. However, as
the number of LAC sets that can reduce delay is large, we
propose to focus on a promising subset of these LAC sets
in Section V-B, which naturally leads to CEG. We finally
conclude how CEG is built in Section V-C.

A. LAC Sets for Delay Reduction

2x

3x

1n

2n

3n

4n

5n

0y

1y

Global cut

AT=0

AT=0

AT=1

AT=2

AT=2

AT=3

AT=3

AT=3

AT=3

AT=1

1

1

4n

5n

0y

1y

AT=0

AT=0

AT=2

AT=1

AT=2

AT=1

AT=1

Replace

with 

const 1

0n 0n

Fig. 2. An example of shortening all the critical paths in the critical graph
by applying delay-reducing LACs to the nodes in a global cut of the critical
graph. The left figure is the critical graph of the AIG in Fig. 1.

Clearly, in order to effectively reduce the delay, we only
need to focus on the nodes on the critical paths. They form
a critical graph formally defined below.

Definition 1 The critical graph CG = (V,E) for a circuit
is a subgraph of it, where V and E are the sets of nodes
and edges, respectively, on the critical paths of the circuit.

If a node in the critical graph corresponds to a
PI/PO/functional node in the original circuit, we also call
it a PI/PO/functional node in the critical graph.

Example 1 The left part of Fig. 2 shows the critical
graph for the AIG in Fig. 1, where the set of nodes
V = {x2, x3, n1, n2, n3, n4, n5, y0, y1} forms the critical
paths of the AIG. In the critical graph, the PIs are x2 and
x3, the POs are y0 and y1, and the functional nodes are
n1, . . . , n5. Note that the node n0 does not belong to the

critical graph; it is shown to illustrate the computation of
AT clearly.

Because there usually exist multiple critical paths in a
circuit, thus, to reduce the circuit delay, it is not enough to
shorten one critical path. Instead, we should shorten all the
critical paths. A global cut gives us a way to achieve this.

Definition 2 A global cut of the critical graph is a set of
nodes satisfying: 1) each node in the set is a functional
node, i.e., neither a PI nor a PO, and 2) each path from a
PI to a PO of the critical graph passes at least one node
in the set.

For instance, {n2, n3} is a global cut of the critical graph
shown in the left part of Fig. 2. If for each node n in a
global cut, we apply a LAC on node n such that n’s AT
decreases, then all the critical paths are shortened, and the
circuit delay is reduced. Such a LAC on a node n leading
to a reduction of n’s AT is called a delay-reducing LAC of
node n.

Example 2 Suppose that we apply the constant LAC [3]
to the circuit shown in the left part of Fig. 2. By replacing
each node in the global cut {n2, n3} with a constant 1,
the ATs of n2 and n3 are both reduced to 0. Even without
further applying constant propagation, the AT of the PO y0
is reduced from 3 to 2, and that of the PO y1 is reduced
from 3 to 1. Hence, the circuit delay is reduced to 2.

The above example shows that constant LAC is delay-
reducing. Besides it, most LACs proposed in previous
works [4]–[8] (discussed in Section II) are also delay-
reducing and hence, are applicable to HEDALS.

By the above analysis, we can conclude that a set of
delay-reducing LACs applied to the nodes on a global cut
of the critical graph of the circuit can reduce the circuit
delay. We call such a LAC set a delay-reducing LAC set.

B. Promising Subset of All Delay-reducing LAC Sets and
Critical Error Graph

The optimal solution to Problem 1 must be a delay-
reducing LAC set. However, the number of delay-reducing
LAC sets is usually very large. First, for a single global cut,
its number of delay-reducing LAC sets grows exponentially
with the size of the cut, as each node in the cut may have
multiple delay-reducing LACs. Moreover, for a large circuit,
the number of global cuts of its critical graph is usually
large. Thus, the number of delay-reducing LAC sets is very
large, and it is prohibitive to evaluate all of them.

To reduce the complexity, we try to identify a promising
subset of all delay-reducing LAC sets with small errors.1 To
achieve this purpose, for each node n in the critical graph,
after obtaining the errors of all of its delay-reducing LACs,
we only keep the one with the minimum error. We call it the
min-error LAC of node n. Then, for each global cut N of
the critical graph, we only maintain a single delay-reducing
LAC set that consists of the min-error LAC for each node
on the cut. We call it the leading LAC set of cut N . The
leading LAC sets of all the global cuts of the critical graph

1Note that the error metric can be any average error metric of interest,
such as ER, MED, and MHD, which can be calculated as shown in
Section III-C.
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form the promising subset. By focusing on the leading LAC
sets, we can convert Problem 1 into the following one.

Problem 2 Given an approximate circuit Gapx, among all
the leading LAC sets of all the global cuts of the critical
graph of Gapx, find one with the minimum error, while also
satisfying that the error does not exceed the error bound
eb.

Since the leading LAC set of any global cut is a delay-
reducing LAC set, the circuit delay is guaranteed to be
reduced after applying all LACs in the final solution set.
Thus, the delay constraint in Problem 1 does not appear in
Problem 2.

An essential component of Problem 2 is the critical graph
of the circuit with each node in the graph associated with
its min-error LAC. This leads to the following definition
of the critical error graph (CEG) of a circuit. Specifically,
suppose that before applying any LAC, the error of the
current approximate circuit, which we refer to as the base
error, is ebase. After applying the min-error LAC of node
n, the error of the resulting approximate circuit is e. The
increased error caused by the LAC is ∆e = e−ebase, which
is also called the minimum error increase (MEI) of node n.
The CEG of the approximate circuit is the critical graph
of the circuit with each functional node associated with its
MEI. For example, Fig. 3 shows the CEG of the AIG in
Fig. 1, where the MEI of each functional node is put near
it. CEG facilitates the solving of Problem 2, which will be
described in Section VI.
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Fig. 3. The critical error graph (CEG) of the AIG in Fig. 1. The value
∆ei beside the functional node ni represents the minimum error increase
(MEI) of ni, where the error metric can be any average error metric of
interest, such as ER, MED, and MHD. Note that the sink node t does not
belong to the CEG; it is only used for obtaining a set of global cuts in
Section VI-B.

C. Building Critical Error Graph
To build the CEG of an approximate circuit Gapx, we first

build the critical graph CG from the nodes and the edges
on the critical paths of Gapx. Then, for each functional node
in CG, a set U of delay-reducing LACs is obtained. After
that, we obtain the error of applying each LAC l ∈ U to
the circuit Gapx, which is achieved by an efficient error
estimation method, VECBEE [16]. Then, we can obtain
the min-error LAC and the corresponding MEI of each
functional node in CG to finally build the CEG.

VI. OBTAINING AN OPTIMIZED LAC SET

This section presents the details of the function FindAp-
plyOptLACSet, which provides a solution to Problem 2. For
a large circuit with many global cuts of its critical graph, it
is still very challenging to exactly solve Problem 2 to find
a leading LAC set with the minimum error. Instead, we
present two methods to obtain an optimized leading LAC
set with a low error. The first is a maximum flow-based
method. The second is a priority cut based-method, which
builds upon and improves the maximum flow-based method.

A. Maximum Flow-based Method
A solution to Problem 2 usually needs to obtain the error

of a LAC set, which is typically done by time-consuming
logic simulation. To improve the efficiency, the maximum
flow-based method relies on an efficient linear model to
estimate the error of a LAC set. We first introduce the model
and then present the method using the model.

1) Estimation of Error of a LAC Set: Consider the
leading LAC set L = {l1, l2, . . . , lm} of a global cut with
m nodes N = {n1, n2, . . . , nm}, where li (1 ≤ i ≤ m)
is the min-error LAC of node ni. Assume that before the
LACs are applied, the circuit has a base error, ebase, and that
after applying the LAC li alone, the resulting approximate
circuit has an error of ei. By definition, the MEI of node
ni is ∆ei = ei − ebase. In the preliminary version of this
work [12], we estimate the error of the leading LAC set L
by a linear model as follows:

Error(L) ≈ e1 + e2 + · · ·+ em. (1)
Since ∆ei = ei − ebase, we also have
Error(L) ≈ (ebase +∆e1) + · · ·+ (ebase +∆em)

=mebase +∆e1 +∆e2 + · · ·+∆em.
(2)

Clearly, the model accumulates the base error m times,
which is unreasonable. In this work, we improve it as
follows:

Error(L) ≈ ebase +∆e1 +∆e2 + · · ·+∆em. (3)
The new model is more accurate, as the example below
shows.

Example 3 In the critical graph shown in Fig. 3, consider
two global cuts N1 = {n1} and N2 = {n2, n3}. Assume
that the LACs l1, l2, and l3 are the min-error LACs of the
nodes n1, n2, and n3, respectively. Then, the leading LAC
sets of N1 and N2 are L1 = {l1} and L2 = {l2, l3},
respectively. Assume that the base error ebase is 0.5, and that
the MEIs of n1, n2, and n3 are ∆e1 = 0.1, ∆e2 = 0.01,
and ∆e3 = 0, respectively. Note that LAC l3 is an exact
local change introducing no error.

By Eq. (2), the errors of L1 and L2 calculated by the
previous model are Errorold(L1) = 0.5 + 0.1 = 0.6 and
Errorold(L2) = 2 × 0.5 + 0.01 + 0 = 1.01, respectively,
which indicates that the LAC set L1 is better due to
its smaller estimated error. However, since LAC l3 is an
exact local change, the error of L2 = {l2, l3} equals that
caused by applying l2 only. Thus, the actual error of L2

is Erroractual(L2) = 0.5 + 0.01 = 0.51. Besides, the actual
error of L1 = {l1} is Erroractual(L1) = 0.5 + 0.1 = 0.6.
Therefore, the LAC set L2 is better in reality.

Now, applying our proposed model, i.e., Eq. (3), we
can obtain the errors of L1 and L2 as Errornew(L1) =
0.5+0.1 = 0.6 and Errornew(L2) = 0.5+0.01+0 = 0.51,
respectively. Thus, L2 is better, which agrees with the
real situation. Furthermore, for this example, the errors
estimated by our proposed model equal the actual values.

It should be noted that the proposed estimation may
not be accurate, since the exact error increase of applying
multiple LACs together may not equal the sum of the error
increases of applying each individual LAC alone. Neverthe-
less, for the average error metrics such as ER, MED, and
MHD, the sum is still a good first-order approximation and
enables the design of a more efficient algorithm.
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2) Entire Flow of Maximum Flow-based Method: For
simplicity, we call the sum of the MEIs of all nodes in
a global cut the MEI sum of the global cut. By our error
estimation model shown in Eq. (3), the error of the leading
LAC set of a global cut equals the MEI sum of the global
cut plus the base error. Since the base error is the same
for all the leading LAC sets, Problem 2 is converted into
selecting the optimal global cut from the CEG with the
minimum MEI sum.

To find the optimal global cut, our method first maps the
original CEG into a dual graph and then solves a network
flow problem on it. The dual graph is built as follows.
(a) For each functional node n with MEI ∆e in the CEG,

we add a pair of nodes na and nb and an edge from
na to nb with a capacity of ∆e to the dual graph.

(b) For each edge from a functional node u to a functional
node v in the CEG, we add an edge from ub to va with
an infinite capacity to the dual graph.

(c) We add a source node s. For each edge from a PI node
to a functional node n in the CEG, we add an edge from
s to na with an infinite capacity to the dual graph.

(d) We add a sink node t. For each PO node in the CEG,
let its only fanin functional node be n. We add an edge
from nb to t with an infinite capacity to the dual graph.

s t1a
n

1b
n

2a
n

2b
n

3a
n

3b
n

4a
n

4b
n

5a
n

5b
n

¥ 0.1

0.01 0.2

0.015

¥

¥

¥

¥

¥

¥

¥

Min
Cut

0.00

Fig. 4. The dual graph built from the CEG shown in Fig. 3.

The dual graph built from the CEG shown in Fig. 3
is given in Fig. 4. The dual graph is a classic flow
network [17]. For a flow network, a cut is defined as a set
of edges that disconnects the source and sink upon removal.
The capacity of a cut is the total capacity of all edges in
the cut. A minimum cut of a flow network is a cut with
the minimum capacity over all cuts of the flow network.
Given the above mapping procedure, it is easily seen that
the problem of selecting the global cut of the CEG with the
minimum MEI sum now reduces to the problem of finding
a minimum cut in the dual graph. By the max-flow min-
cut theorem [17], the capacity of a minimum cut in a flow
network equals the maximum flow of the network. Thus, we
can find a minimum cut of the dual graph by solving the
maximum flow problem on the graph. Once each edge in
the minimum cut is obtained, we can get the corresponding
node in the CEG from the mapping relation and obtain the
global cut in the CEG with the minimum MEI sum. By
collecting the min-error LAC of each node in the global
cut, we can obtain an optimized set of LACs.

A special case is that there may exist an edge with a
negative capacity in the dual graph, which corresponds to
a negative MEI of a node n in the CEG. This implies
that the circuit error decreases after applying the min-
error LAC of node n. Since a maximum flow algorithm
cannot work on a flow network with negative capacities, a
pre-processing is required, which corresponds to the pre-
processing mentioned in Section IV. Note that the AT of
node n is reduced by applying the min-error LAC of n.
Such a LAC reducing both the error and the AT is highly
desired. Thus, if there exists a node with a negative MEI in

the CEG, we can directly apply the min-error LAC of the
node to simplify the current approximate circuit and update
the CEG. This process repeats until there is no negative
MEI in the CEG. After that, a maximum flow algorithm
can be applied.

Algorithm 2: FindApplyOptLACSet Flow, a func-
tion for finding and applying an optimized LAC
set to reduce delay by the maximum flow-based
method.

Input: the current approximate circuit Gapx and an error
upper bound eb.

Output: a flag HasSol, denoting the existence of a valid
LAC set, and a new approximate circuit Gnew.

1 Gapx ⇐ PreprocessNegativeCapacity(Gapx);
2 CEG ⇐ BuildCriticalErrorGraph(Gapx);
3 DualGraph ⇐ BuildDualGraph(CEG);
4 MinCut ⇐ SolveMaxFlow(DualGraph);
5 Global cut N ⇐ EdgeToNode(MinCut);
6 LAC set L ⇐ GetMinErrorLACs(N );
7 if GetError(L) ≤ eb then ▷ if solutions exist
8 Gnew ⇐ ApplyLACSet(Gapx,L); return (true, Gnew);
9 else Gnew ⇐ Gapx; return (false, Gnew);

Algorithm 2 shows the entire flow of the maximum flow-
based implementation of the function FindApplyOptLACSet,
which finds an optimized set of LACs and applies them to
simplify the approximate circuit. Line 1 pre-processes the
current approximate circuit Gapx to avoid the occurrence of
negative MEIs in the CEG. It repeatedly finds the node in
the CEG with the smallest MEI and applies its min-error
LAC to update the approximate circuit, until the MEIs of
all nodes in the CEG of the approximate circuit are non-
negative. Then, Line 2 constructs the CEG of the current
approximate circuit Gapx. Line 3 builds the dual graph from
the CEG. Line 4 solves the maximum flow problem and
returns the minimum cut in the dual graph. Line 5 maps
the minimum cut in the dual graph into the global cut N in
the CEG. Line 6 obtains the set of min-error LACs L for all
nodes in N . Then, we accurately evaluate the error of the
LAC set L by logic simulation. If the error of L does not
exceed the upper bound eb, then the LACs in L are applied
to the approximate circuit Gapx pre-processed in Line 1, and
Line 8 returns HasSol = true and the resulting approximate
circuit Gnew. Otherwise, Line 9 returns HasSol = false and
the pre-processed circuit Gapx.

B. Priority Cut-based Method

As we mentioned at the end of Section VI-A1, the error
estimation model used in the maximum flow-based method
is not accurate. This means that the LAC set found by the
maximum flow-based method can be further improved. To
achieve this, we propose a priority cut-based method in this
section. For a set of nodes S in the CEG, we use Error(S)
to denote the error of the approximate circuit obtained by
applying the min-error LACs of the nodes in set S. We also
refer to it as the error of the node set S. Assume that the
global cut found by the maximum flow-based method is
Nref. Let ϵ = Error(Nref). We want to find a better global
cut N so that Error(N ) < ϵ. We first present a basic
method to do this by traversing a set of global cuts, and
then a pruning method for acceleration, which leads to the
priority cut-based method.
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1) Basic Method by Traversing a Set of Global Cuts:
This method traverses a set of global cuts of the CEG to
find whether there exists one with a lower error than Nref.
We next present how the set of global cuts is constructed.
We first modify the CEG by adding a sink node t and
connecting the fanin of each PO to node t. As shown in
Fig. 3, the fanins of the POs are n4 and n5, and they are
connected to the sink node t. The following definition of a
local cut helps the construction.

Definition 3 A local cut of a node n in the CEG is either
a trivial set {n}, or a set of nodes satisfying: 1) each node
in the set is a functional node, and 2) each path from a PI
of the CEG to a fanin of node n passes at least one node
in the set.

With the sink node t added, by Definition 3, a local cut of
node t except {t} corresponds to a global cut of the CEG.
Thus, we only need to obtain a set of local cuts of the sink
node t. To achieve this, we modify the method proposed
in [18] to derive a set of local cuts of each node n in the
CEG, denoted as Φ(n). Our method relies on an operator
1 for merging two sets of local cuts A and B:

A 1 B = {a ∪ b|a ∈ A, b ∈ B}.
Particularly, A 1 B is empty if either A or B is empty. In
addition, if there are repetitive local cuts after performing
A 1 B, only one of them is kept, and the others are
discarded.

Example 4 Consider two sets of local cuts A =
{{n1}, {n2}} and B = {{n1}, {n3}}. A 1 B =
{{n1}, {n1, n2}, {n1, n3}, {n2, n3}}.

For each functional/sink node n in the CEG, assume that
it has r fanins u1, u2, . . . , ur. The set of local cuts of node
n, Φ(n), is obtained recursively as follows:

Φ(n) =

{
{{n}}, if n is connected to any PI;
{{n}} ∪ (Φ(u1) 1 · · · 1 Φ(ur)), otherwise.

(4)

A brief explanation of Eq. (4) is as follows. For a node
n connected to any PI in a CEG, assume that one of the
connected PIs is x. Then, the path from x to a fanin of
n has only one node, which is x, a non-functional node.
Thus, there does not exist a set of nodes satisfying both
Conditions (a) and (b) in Definition 3, and hence, only the
trivial set {n} can be a local cut of n. For a node n not
connected to any PIs in the CEG, all its fanins are functional
nodes. In this case, a local cut of n can be either the trivial
set {n}, or a local cut obtained by merging the local cuts
of the fanins of n.

We apply Eq. (4) to each functional/sink node in the CEG
in a topological order to finally get Φ(t). After that, a set
of global cuts is obtained as Φ(t)\{t}. An example of how
to obtain a set of global cuts is as follows.

Example 5 In Fig. 3, a set of local cuts of each func-
tional/sink node can be obtained by Eq. (4) in a topological
order as follows:

Φ(n1) ={{n1}},
Φ(n2) ={{n2}} ∪ Φ(n1) = {{n1}, {n2}},
Φ(n3) ={{n3}} ∪ Φ(n1) = {{n1}, {n3}},
Φ(n4) ={{n4}} ∪ Φ(n2) = {{n1}, {n2}, {n4}},
Φ(n5) ={{n5}} ∪ (Φ(n2) 1 Φ(n3))

={{n1}, {n1, n2}, {n1, n3}, {n2, n3}, {n5}},
Φ(t) ={{t}} ∪ (Φ(n4) 1 Φ(n5)) =

{{t}, {n1}, {n1, n2}, {n1, n3}, {n1, n4}, {n1, n5},
{n2, n3}, {n2, n5}, {n4, n5}, {n1, n2, n3},
{n1, n2, n4}, {n1, n3, n4}, {n2, n3, n4}}.

Then, a set of global cuts of the CEG is obtained as
Φ(t)\{t}.

For each obtained global cut, we need to run logic
simulation to obtain its error and then pick the cut with
the smallest error. Unfortunately, the basic method may
consider a large number of global cuts. Assume that the
set of functional nodes in the CEG is V . By Definition 2, a
global cut is a subset of V . In the worst case, the number
of global cuts considered by the basic method, Nb, can
approach the total number of subsets of V . Thus, we have
Nb = O(2|V|), which makes the basic method impractical
for a large circuit.

2) Accelerated Method: To make the basic method prac-
tical, we propose an accelerated method based on pruning.

Consider that in a CEG where all MEIs are non-negative,
we merge two local cuts a and b, and the resulting local
cut is c = a ∪ b. We make an assumption that Error(c)
is larger than Error(a) and Error(b). This assumption is
reasonable, since c is a superset of both a and b. Thus,
compared to approximating a or b with the min-error LACs,
approximating c with the min-error LACs modifies more
nodes in the circuit. In addition, since all MEIs are non-
negative, each min-error LAC applied will increase the
error. Hence, approximating c is more likely to introduce a
larger error. Under this assumption, when updating the set
of local cuts of node n by Eq. (4), we can only keep the
local cuts with errors no more than ϵ, i.e., the minimum
error obtained by the maximum flow-based method. The
reason is that under the assumption, a global cut with error
no more than ϵ cannot be the merge of some local cuts that
include one cut with error greater than ϵ.

In practice, we introduce a new operator 1̃ϵ that merges
two sets of local cuts A and B with an error limit ϵ:

A1̃ϵB = {a ∪ b|a ∈ A, b ∈ B,Error(a ∪ b) ≤ ϵ}.
For a node set S, logic simulation is used to obtain

Error(S) accurately. In this way, only those global cuts
with errors no more than ϵ are explored, and hence, we
may find a better global cut with a smaller error than that
obtained by the maximum flow-based method.

We call a local cut with its error no more than ϵ a priority
cut. With the new operator 1̃ϵ, for each functional/sink node
n in the CEG, we can rewrite Eq. (4) to the following one
to obtain a set of priority cuts of n, denoted as Ψ(n):

Ψ(n) =

{
{{n}}, if n is connected to any PI;
{{n}} ∪ (Ψ(u1)1̃ϵ · · · 1̃ϵΨ(ur)), otherwise.

(5)

We also apply Eq. (5) to each functional/sink node in the
CEG in a topological order. After that, we obtain a set of
global cuts with errors no more than ϵ as Ψ(t)\{t}, where
t is the sink node of the CEG.

In addition, for efficiency concerns, it is undesired to
have too many priority cuts in Ψ(n) for each n. Thus, if
there are more than λ priority cuts in Ψ(n), where λ is
a user-specified limit, we sort the priority cuts in Ψ(n) in
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the ascending order of their errors and only keep the top λ
priority cuts. By considering more priority cuts with a larger
λ, it is likely to find a better global cut with a smaller error,
which leads to a better approximate design. Meanwhile,
a larger λ also causes a longer runtime. Thus, there is a
quality-runtime tradeoff by applying different λ’s. To decide
a good choice of λ, we can select several representative
benchmarks, test their quality-runtime tradeoff with various
λ’s, and then choose a λ leading to circuits with good
qualities in a short time.

Now, we analyze the number of cuts whose errors should
be evaluated by logic simulation. Assume that the maximum
fanin count for all functional/sink nodes in the CEG is τ .
For each functional/sink node n in the CEG, Eq. (5) merges
the priority cuts of n’s fanins. Since there are at most λ
priority cuts for each fanin of n, after merging these priority
cuts, O(λτ ) new local cuts are generated on n. We need to
evaluate the errors of these new local cuts and keep the best
λ ones. Usually, τ is a small constant. For example, τ ≤ 4
for all circuits in the BACS [13] and ISCAS [19] benchmark
suites. Thus, for each node, the accelerated method needs
to run logic simulation for O(λτ ) = O(1) cuts. Given |V|
nodes in the CEG, the total number of cuts that need to be
simulated by the accelerated method is O(|V|). It is much
smaller than O(2|V|), the number of cuts that need to be
simulated by the basic method.

Algorithm 3: FindApplyOptLACSet Cut, a function
for finding and applying an optimized LAC set to
reduce delay by the priority cut-based method.

Input: the current approximate circuit Gapx, an error
upper bound eb, and a given limit λ.

Output: a flag HasSol, denoting the existence of a valid
LAC set, and a new approximate circuit Gnew.

1 Gapx ⇐ PreprocessNegativeCapacity(Gapx);
// Get reference solution by maximum

flow
2 (HasSolref, Gref) ⇐ FindApplyOptLACSet Flow(Gapx, eb);
3 if HasSolref = true then error limit ϵ ⇐ GetError(Gref);
4 else error limit ϵ ⇐ eb;
// Improve solution by priority cut

5 CEG ⇐ BuildCriticalErrorGraph(Gapx);
6 Add a sink node t into CEG;
7 foreach functional/sink node n ∈ CEG in topo. order do
8 Get Ψ(n) by Eq. (5) with parameters ϵ and λ;
9 Global cut N ⇐ the cut in Φ(t)\{t} with the smallest

error;
10 LAC set L ⇐ GetMinErrorLACs(N );
11 if GetError(L) ≤ eb then
12 Gnew ⇐ ApplyLACSet(Gapx,L); return (true, Gnew);
13 Local cut N ′ ⇐ the local cut with the smallest error from

all Ψ(n)’s, where n is a functional node in CEG;
14 LAC set L′ ⇐ GetMinErrorLACs(N ′);
15 if GetError(L′) ≤ eb then
16 Gnew ⇐ ApplyLACSet(Gapx,L′); return (true, Gnew);
17 Gnew ⇐ Gapx; return (false, Gnew);

3) Entire Flow of Priority Cut-based Method: Algo-
rithm 3 shows the priority cut-based implementation of the
function FindApplyOptLACSet, which finds an optimized
set of LACs and applies them to simplify the approximate
circuit. It also starts with a pre-processing of the input
approximate circuit to avoid the occurrence of negative
MEIs in the CEG (Line 1). After that, Line 2 obtains a
reference solution by the maximum flow-based method to
determine an important parameter, error limit ϵ, for efficient

cut enumeration. If the reference solution exists, namely,
the maximum flow-based method can find a set of LACs to
reduce the circuit delay without violating the error bound eb,
then Line 3 sets ϵ as the error of the approximate circuit Gref

produced by the maximum flow-based method. Otherwise,
Line 4 sets ϵ as eb. Then, we try to improve the reference
solution by efficiently enumerating priority cuts. To do this,
Line 5 builds a CEG from the pre-processed approximate
circuit Gapx, and Line 6 adds a sink node t to the CEG.
Then, Line 7 traverses each functional/sink node in the CEG
following a topological order, and a set of priority cuts of
each node n, Ψ(n), is obtained by Eq. (5) based on the
error limit ϵ and the parameter λ (Line 8). Next, Lines 9–10
derive the global cut with the smallest error from Ψ(t)\{t}
and the set of min-error LACs L for all the nodes in the
global cut. If the error of the LAC set L does not exceed the
error bound eb (Line 11), then Line 12 applies the LACs
in L to further approximate the circuit Gapx, and returns
HasSol = true and the resulting circuit Gnew. Otherwise,
when there is no global cut with error no more than eb, we
further explore the local cuts of all functional nodes in the
CEG, since the LACs on local cuts may contribute to delay
reduction too. Line 13 selects the best local cut N ′ with the
smallest error from all Ψ(n)’s, where n is a functional node
in the CEG. Line 14 obtains the set of min-error LACs L′

for all nodes in N ′. If the error of the LAC set L′ does not
exceed the error bound eb, then L′ is used to simplify Gapx,
and Line 16 returns HasSol = true and the resulting circuit
Gnew. However, it is also possible that there is no global or
local cut with error no more than eb. In this case, Line 17
returns HasSol = false and the pre-processed circuit Gapx.

Compared to the maximum flow-based method, the prior-
ity cut-based method has some computation overhead. By
analyzing Algorithm 3, we find that the overhead mainly
lies in the error evaluation of many local cuts by logic
simulation, which helps build the set of priority cuts for
each node (Lines 7–8 of Algorithm 3). As discussed at the
end of Section VI-B2, the number of these local cuts is
O(|V|). Assume that the number of input patterns used in
each logic simulation is M and the number of nodes in the
entire circuit is W . Then, the time complexity to simulate
the circuit to get the error of one cut is O(MW ). As the
simulation is performed for O(|V|) cuts to get their errors,
the computation overhead of the priority cut-based method
is O(MW |V|).

VII. EXPERIMENTAL RESULTS

This section presents the experimental results. All the
experiments are carried out on a computer with an Intel
Xeon Gold 6146 CPU (3.20GHz) and 256 GB memory
running Ubuntu 20.04. HEDALS is implemented in C++
and tested with a single thread of the CPU. The average
errors are measured through logic simulation. We assume
that the input patterns are uniformly distributed, although
other input distributions can also be handled. For each
logic simulation, we randomly generate 100,000 input vec-
tors, which are sufficient to obtain average errors with a
high accuracy [9], [16]. The delay-oriented synthesis and
mapping in HEDALS (i.e., the function SynthesizeAndMap
in Algorithm 1) are performed by ABC [20]. We apply
the ABC script “resyn; resyn2” 6 times for technology-
independent synthesis and the ABC command map for
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technology mapping using the Nangate 45nm open cell
library [21]. We also use ABC to report the circuit area
in µm2 and delay in ns after mapping, where the delay
is reported by the STA command stime. We use delay and
area ratios to evaluate the cost of the approximate designs.
The delay ratio (resp. area ratio) is defined as the ratio of
the delay (resp. area) of the approximate circuit over that of
the original one. Obviously, smaller delay and area ratios
are preferred.

TABLE I. BENCHMARK CIRCUIT INFORMATION.
Benchmark Circuit #I/Os AIG Gate-netlist

suite Size Depth Area Delay

ISCAS85

c880 60/26 313 22 231.7 0.38
c1355 41/32 390 16 429.1 0.45
c1908 33/25 367 25 378.8 0.61
c2670 233/140 579 17 534.1 0.40
c3540 50/22 937 32 716.3 0.78
c5315 178/123 1306 28 951.0 0.57
c7552 207/108 1469 26 1030.2 1.06

BACS

absdiff 16/9 104 14 101.9 0.30
add32 64/33 302 20 254.0 0.43
buttfly 32/34 227 31 212.0 0.50
mac 12/8 124 20 142.8 0.37
mult8 16/16 470 44 496.4 0.88
mult16 32/32 2033 41 2337.9 0.84

EPFL

add128 256/129 1019 314 982.9 4.83
barshift 135/128 2688 14 1945.0 0.85
divisor 128/128 23667 4473 19949.5 89.78
log2 32/32 38540 419 26422.8 11.56
max 512/130 2686 549 2456.2 10.98
mult64 128/128 33242 326 22401.5 6.87
sine 24/25 7044 180 5334.4 4.50
sqrt 128/64 21951 4591 19035.5 128.16
square 64/128 20030 296 14394.6 5.88

Table I lists benchmarks used in the experiments, in-
cluding several circuits from the ISCAS85 benchmark
suite [19], all arithmetic circuits from the BACS bench-
mark suite [13], and some largest circuits from the EPFL
benchmark suite [22]. Both the AIG and gate-netlist repre-
sentations are considered, and they are optimized by ABC
to fully minimize their delays. Specifically, to produce
the AIG representation of a benchmark, we first convert
the benchmark into AIG with the ABC command strash
and then fully optimize the AIG by repeatedly applying
the delay-oriented synthesis script resyn2 until its quality
cannot be further improved. The sizes and depths of the
optimized AIGs are listed in columns 4 and 5 of Table I,
respectively. To produce the gate-netlist representation of a
benchmark, we first convert it into an AIG with strash and
fully optimize the AIG delay in the same way as we do for
the AIG representation. Then, we apply the delay-oriented
technology mapping command map to the AIG. The last
two columns of Table I list the areas and delays of the gate
netlists, respectively.

In what follows, several sets of experiments are designed
to study the performance of HEDALS. They involve various
types of LACs, circuit representations, and error constraints.

A. Study under the NMED Constraint

This section performs experiments under the NMED
constraint on the BACS benchmarks listed in Table I.
NMED is a commonly-used error metric for arithmetic
circuits. We apply HEDALS on the AIG representation of
a circuit, but finally, we map the AIG into a gate netlist for
area and delay evaluation.

1) Accuracy and Impact of the Linear Error Estimation
Models: Section VI-A proposes a linear model, Eq. (3),
to estimate the error of a LAC set. We first evaluate
its accuracy on the adder and multipliers in the BACS
benchmark suite, i.e., adder32, mult8, and mult16. We
run the maximum flow-based HEDALS using the linear
error estimation model. The applied LAC is the constant
LAC [3], i.e., replacing a node by a constant 0 or 1. For
each benchmark, we consider the first 7 iterations in the
HEDALS flow. For each optimized LAC set found in each
iteration, we compare its estimated error (EER) obtained
by Eq. (3) and the actual error (AER) obtained by logic
simulation. We use the same set of 100,000 input vectors
to calculate the EER and AER. As shown in Fig. 5, except
iterations 4 and 6 for mult8 and iteration 7 for mult16, the
EER is close to AER for all the 7 iterations of the three
circuits.

1 2 3 4 5 6 7
Iteration

0.000

0.002

0.004

0.006

NM
ED

adder32 EER
adder32 AER
mult8 EER
mult8 AER
mult16 EER
mult16 AER

Fig. 5. Comparison of estimated error (EER) and actual error (AER). The
error metric is NMED.

In the prior work [12], a less accurate linear error estima-
tion model shown in Eq. (2) is proposed. We further com-
pare the impacts of this model and our more accurate model
based on Eq. (3). We consider each point in each AER curve
in Fig. 5, which corresponds to an intermediate approximate
design. We apply Eqs. (2) and (3), respectively, to each
intermediate design and obtain their resulting optimized
LAC sets. Table II lists all the circuits and their iterations
where the LAC set found using Eq. (2) differs from that
found using (3). It also lists the AERs of those different
LAC sets. We can see that our model, Eq. (3), can lead
to better LAC sets with smaller AERs. We also compare
the final circuit quality achieved by both models under two
NMED bounds, 0.3% and 3.0%. Compared to using Eq. (2),
using Eq. (3) reduces more delay by 7.9%, 1.7%, and 0.8%,
on average, for adder32, mult8, and mult16, respectively,
while the average circuit area does not increase.

TABLE II. ALL DIFFERENT OPTIMIZED LAC SETS FOUND BY DIFFER-
ENT LINEAR ERROR MODELS IN THE FIRST 7 ITERATIONS OF HEDALS.
THE BOLD ENTRIES MEAN THAT EQ. (3) LEADS TO BETTER LAC SETS
WITH SMALLER AERS THAN EQ. (2).

Circuit Iteration AER of optimized
LAC set by Eq. (2)

AER of optimized
LAC set by Eq. (3)

adder32 3 1.45E-05 1.14E-05
adder32 6 3.75E-04 3.34E-04
mult8 6 8.10E-03 5.22E-03
mult16 6 2.25E-03 2.24E-03

2) Comparing Maximum Flow-based Method with Prior-
ity Cut-based Method: In the HEDALS framework, a max-
imum flow-based method and a priority cut-based method
are proposed. We compare their performance in this section
with an NMED bound of 0.005. The applied LAC is the
constant LAC.
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(a) Delay comparison for various benchmarks and methods.

absdiff add32 buttfly mac mult8 mult16
0.0

0.2

0.4

0.6

0.8

1.0

Ar
ea

 ra
tio max flow

cut(λ=2)
cut(λ=4)
cut(λ=8)
cut(λ=16)

(b) Area comparison for various benchmarks and methods.
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(c) Runtime comparison for various benchmarks and methods.

Fig. 6. Comparison between the maximum flow-based and priority cut-
based methods on the BACS benchmark suite under an NMED bound of
0.005.

Fig. 6 compares the delay ratio, area ratio, and runtime of
the maximum flow-based and priority cut-based methods.
Different limits λ’s are used in the priority cut-based
method. For each circuit, the runtime is normalized to that
of the priority cut-based method with λ = 16.

As shown in Figs. 6(a) and 6(b), the priority cut-based
method reduces more delay and area than the maximum
flow-based method on most benchmarks. The reason is that
using priority cuts, we can find a set of LACs causing a
smaller error in each iteration of the HEDALS flow. Then,
the error increase of each iteration is smaller, leading to
more iterations and hence, more sets of LACs applied to
simplify the circuit. However, there are two exceptions.
The first is mac. Its approximate designs generated by both
methods have the same delay and area. Actually, in each
iteration during the synthesis of mac, the set of LACs
found by both methods are exactly the same, and hence,
the final approximate circuits are identical. The second one
is buttfly, for which the priority cut-based method produces
approximate circuits with smaller delays but larger areas.
In terms of runtime, the priority cut-based method takes
a longer runtime, since it calls the maximum flow-based
method to generate a reference solution.

In terms of the influence of the parameter λ, Fig. 6(a)
shows that delay ratio decreases or stays the same as λ in-
creases. As shown in Fig. 6(b), area ratio behaves similarly
as delay ratio with different λ’s. It is reasonable since with
a larger λ, more priority cuts in the CEG are considered.
Thus, it is more likely to find a better global cut with a
smaller error. This leads to more approximation iterations
and hence, more delay and area reduction. Furthermore, as
λ changes from 8 to 16, the delay ratios of all circuits
remain unchanged. It implies that by keeping at most 8

priority cuts for each node in the CEG, we can find good
enough approximate circuits with small delays. In terms of
efficiency, Fig. 6(c) shows that the runtime increases with
λ. This is reasonable since with a larger λ, more priority
cuts are considered for each node, which takes a longer
runtime. Considering delay, area, and runtime, we can see
that the priority cut-based method with λ = 8 can achieve
good delay and area savings in a short time. Thus, in the
remaining experiments, we choose this implementation for
HEDALS unless otherwise specified.
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Fig. 7. Quality-NMED tradeoff on the BACS benchmark suite.

3) Quality-NMED Tradeoff of Approximate Designs:
This section studies the quality-NMED tradeoff of the
approximate circuits synthesized by HEDALS. To show
that HEDALS can support various LACs, we select another
LAC, the ALSRAC LAC [7].

We run HEDALS on each BACS benchmark under 5
NMED bounds, i.e., 1

29−1 ≈ 0.20%, 3
29−1 ≈ 0.59%,

7
29−1 ≈ 1.37%, 15

29−1 ≈ 2.94%, and 31
29−1 ≈ 6.07%.

Fig. 7(a) plots the delay ratio-NMED curves. For each
circuit, the delay decreases monotonically with the NMED.
When the NMED reaches 6.07% (see the rightmost points
on the curves), the delay ratio of different circuits ranges
from 5% (i.e., mult8) to 34% (i.e., absdiff ). Although area
saving is a byproduct of HEDALS, we also plot the area
ratio-NMED curves in Fig. 7(b). From Fig. 7(b), areas of
most approximate circuits are less than those of the exact
counterparts. Moreover, the area decreases with the NMED
for all the circuits except mac. For mac, when the NMED
changes from 0.20% to 0.59%, its area increases. It is
because HEDALS works on the AIG representation of a
circuit in this experiment, but the area and delay are evalu-
ated after technology mapping. As the NMED changes from
0.20% to 0.59% for mac, the AIG size keeps unchanged and
the depth decreases, which is expected. However, its area
increases after mapping due to an occasional inconsistency
between the quality change trend of an AIG and that of a
mapped gate netlist. When the NMED approaches 6.07%
(see the rightmost points on the curves), the area ratio of
different circuits varies from 1% (i.e., mult16) to 33% (i.e.,
absdiff ).

We also compare HEDALS with a state-of-the-art ALS
flow, BLASYS [9], which is an open-source area-oriented
flow. BLASYS is run with 48 threads of our CPU, and we
report its runtime as the total runtime of all threads. For
a more fair comparison with our delay-oriented HEDALS
flow, BLASYS is slightly modified to enhance its abil-
ity in reducing delay. Specifically, the modified BLASYS
applies the same delay-oriented synthesis and mapping
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TABLE III. COMPARISON BETWEEN HEDALS AND BLASYS UNDER
THE NMED CONSTRAINT. THE BOLD VALUES MEAN THAT HEDALS
OUTPERFORMS BLASYS.

NMED Delay ratio Area ratio Runtime/min
Circuit bound HEDALSBLASYS HEDALSBLASYS HEDALSBLASYS

absdiff 0.59% 65.9% 103.9% 73.4% 83.5% 0.09 2.84
2.94% 42.3% 98.3% 40.2% 74.7% 0.14 6.09

adder32 0.59% 30.5% 43.6% 40.2% 31.9% 0.54 39.00
2.94% 18.9% 24.3% 29.3% 33.1% 0.55 41.14

buttfly 0.59% 36.0% 45.7% 43.7% 61.7% 0.29 27.08
2.94% 25.3% 37.5% 31.5% 41.2% 0.41 29.63

mac 0.59% 92.1% 97.6% 96.3% 95.2% 0.05 0.22
2.94% 53.4% 104.8% 48.8% 72.4% 0.14 2.61

mult8 0.59% 57.8% 60.7% 78.2% 34.5% 1.18 1168.26
2.94% 11.7% 34.0% 14.0% 16.2% 2.10 1235.36

mult16 0.59% 59.2% 70.6% 37.8% 15.8% 21.59 2835.34
2.94% 29.6% 52.1% 7.6% 7.8% 23.06 3007.71

Average 43.6% 64.4% 45.1% 47.3% 4.18 699.61

process used in HEDALS, i.e., applying the ABC script
“resyn; resyn2” 6 times, followed by the ABC command
map. We compare the approximate designs generated by
HEDALS and BLASYS under two NMED bounds, 0.59%
and 2.94%. The results are listed in Table III. We can see
that for all benchmarks, the delay ratio of HEDALS is
much smaller than that of BLASYS. On average, HEDALS
further reduces the delay ratio by a relative value of 32.3%
over BLASYS, which shows the effectiveness of HEDALS
in delay optimization. Furthermore, we find that for all
benchmarks under some NMED bounds, HEDALS can even
reduce more area. The reason is that BLASYS partitions
a circuit into sub-circuits and reduces the area of each
sub-circuit separately. This method may miss some area
reduction opportunities, such as the simplification across
two sub-circuits. On the contrary, HEDALS does not par-
tition the circuit and can consider some opportunities that
BLASYS misses, hence reducing more area than BLASYS
sometimes. As for efficiency, HEDALS is much faster than
BLASYS on all benchmarks. On average, HEDALS accel-
erates by 167× over BLASYS. The acceleration arises from
two aspects. First, although both HEDALS and BLASYS
simplify circuits iteratively, HEDALS has fewer iterations.
Its reason is that HEDALS applies multiple LACs in each it-
eration, while BLASYS only applies one. Hence, HEDALS
modifies more sub-circuits in each iteration and approaches
the error bound faster. Second, the runtime of HEDALS for
each iteration is much shorter, since it only focuses on the
nodes on the critical graph of the circuit and only considers
the min-error LACs of these nodes. Besides, it prunes LAC
sets with large errors by the priority cut-based method.

B. Study under ER Constraint
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(b) Area-ER tradeoff.

Fig. 8. Quality-ER tradeoff on the ISCAS benchmark suite.

This section studies the performance of HEDALS on the
7 ISCAS85 circuits listed in Table I under the ER constraint.
ER measures the erroneous probability of a circuit. It is
suitable for evaluating the accuracy of circuits such as
classifiers, controllers, and error correctors (e.g., c1355 and
c1908). It is also widely used as an additional error metric
for arithmetic circuits (e.g., c7552) [23] and arithmetic logic
units (e.g., c880, c2670, c3540, and c5315) [4]. To further
show the wide applicability of HEDALS, we apply it to
the gate-netlist representation of these benchmarks with the
constant LAC.

We run HEDALS on each benchmark under 5 ER bounds,
0.5%, 1%, 5%, 10%, and 25%. Fig. 8(a) plots the delay
ratio-ER curves of the approximate circuits generated by
HEDALS. For all circuits, the delay decreases monoton-
ically with the ER. When the ER reaches 25% (see the
rightmost points on the curves), the delay ratio of different
circuits ranges from 4% (i.e., c1355) to 80% (i.e., c3540).
We also plot the area ratio-ER curves in Fig. 8(b). For
all approximate circuits, their areas are smaller than the
areas of the exact counterparts. Moreover, the area decreases
monotonically with the ER for all circuits. For some circuits
such as c3540, c5315, and c7552, the area is almost
unchanged. However, for some other circuits such as c1355
and c1908, the area also reduces by a large amount.

We also compare HEDALS with BLASYS, where the
setup of BLASYS is the same as that in Section VII-A3. We
compare the approximate designs generated by HEDALS
and BLASYS under two ER bounds, 0.5% and 5%. The
results are listed in Table IV. We can see that the delay ratio
of HEDALS is always smaller than that of BLASYS except
for the case of c2670 under an ER bound of 0.5%. In this
case, HEDALS cannot simplify c2670, while BLASYS can.
On average, HEDALS further reduces the delay ratio by a
relative value of 6.1% over BLASYS. Table IV also shows
that HEDALS reduces less area than BLASYS, but it is
guaranteed that the area of an approximate circuit produced
by HEDALS is no larger than that of the exact counterpart.
As for efficiency, HEDALS is much faster than BLASYS
on all circuits. On average, HEDALS accelerates by 9799×
over BLASYS.

TABLE IV. COMPARISON BETWEEN HEDALS AND BLASYS UNDER
THE ER CONSTRAINT. THE BOLD VALUES MEAN THAT HEDALS IS
BETTER THAN BLASYS.

ER Delay ratio Area ratio Runtime/min
Circuit bound HEDALSBLASYS HEDALSBLASYS HEDALSBLASYS

c880 0.5% 95.3% 98.6% 94.8% 89.9% 0.01 24.1
5.0% 92.3% 93.9% 93.3% 75.0% 0.04 48.6

c1355 0.5% 98.1% 120.8% 99.4% 98.3% 0.03 70.6
5.0% 83.3% 94.1% 92.4% 95.5% 0.05 200.3

c1908 0.5% 85.2% 90.6% 99.3% 90.9% 0.02 55.5
5.0% 32.3% 33.7% 45.7% 41.9% 0.16 385.4

c2670 0.5% 100.0% 79.6% 100.0% 64.5% 0.03 297.6
5.0% 76.7% 81.5% 95.1% 63.7% 0.17 347.7

c3540 0.5% 94.8% 99.7% 99.8% 92.0% 0.02 445.4
5.0% 93.7% 101.6% 99.4% 83.0% 0.04 1366.0

c5315 0.5% 84.4% 88.2% 99.2% 96.5% 0.05 2267.6
5.0% 83.2% 86.9% 99.7% 97.5% 0.15 2538.6

c7552 0.5% 92.0% 93.7% 99.9% 84.4% 0.07 1362.9
5.0% 70.1% 95.4% 99.5% 81.7% 0.30 1564.5

Average 84.4% 89.9% 94.1% 82.5% 0.08 783.9

C. Study under MHD Constraint

To show its scalability, we run HEDALS on the large
EPFL benchmarks listed in Table I under the NMHD
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constraint. We apply HEDALS on the AIG representation
of a circuit, and the applied LAC is ALSRAC. Since
these benchmarks are large, we apply the priority cut-based
method with λ = 1 to save runtime. We also compare
HEDALS with BLASYS, but we do not run the BLASYS
program due to its long runtime. For example, as reported
in [9], it takes BLASYS about 19 days to generate an
approximate circuit for the benchmark sine with 7044 AIG
nodes under an NMHD bound of 5%. Instead, we directly
use the data from [9] for comparison. Although a different
65nm standard cell library is used in [9], the area and delay
ratios from [9] are still good references.

We compare the results of HEDALS and BLASYS on
the EPFL benchmarks under the same two NMHD bounds
used in [9], 5% and 10%. As shown in Table V, the circuit
delay is significantly reduced by HEDALS. On average, the
delay ratio of HEDALS is 45.3%, which is about half of
that of BLASYS. Particularly, HEDALS saves much delay
on divisor. It reduces 97.7% and 99.2% delay under NMHD
bounds of 5% and 10%, respectively. Meanwhile, the av-
erage area ratio of HEDALS is 69.2%, which is relatively
19.2% smaller than BLASYS. Furthermore, HEDALS is
very efficient: its runtime for most designs is less than one
hour.

TABLE V. PERFORMANCE OF HEDALS ON THE LARGE EPFL CIR-
CUITS. THE BOLD VALUES MEAN THAT HEDALS OUTPERFORMS
BLASYS. DATA OF BLASYS ARE FROM [9]. N/A MEANS THAT THE
CORRESPONDING DATA IS NOT REPORTED IN [9].

Circuit NMHD Delay ratio Area ratio Runtime/min

bound HEDALSBLASYS HEDALSBLASYS HEDALSBLASYS

add128 5% 35.1% 90.8% 81.3% 89.4% 0.3 340.3
10% 15.6% 80.9% 72.6% 79.4% 0.4 N/A

barshift 5% 91.8% 105.6% 87.1% 95.8% 19.2 3510
10% 83.4% 88.5% 84.0% 90.0% 34.6 N/A

divisor 5% 2.3% 91.6% 6.3% 85.9% 62.8 N/A
10% 0.8% 73.0% 4.3% 76.2% 89.3 N/A

log2 5% 77.8% 100.5% 96.8% 92.9% 19.1 N/A
10% 70.5% 78.2% 96.6% 82.1% 53.0 N/A

max 5% 21.1% 114.3% 34.5% 91.0% 6.2 N/A
10% 20.5% 94.3% 31.1% 77.6% 4.5 N/A

mult64 5% 59.0% 99.4% 88.8% 87.7% 14.7 N/A
10% 53.3% 93.8% 90.2% 80.5% 21.2 N/A

sine 5% 76.5% 93.1% 94.9% 84.3% 1.3 27849.3
10% 70.6% 79.9% 93.6% 71.7% 2.1 N/A

sqrt 5% 50.6% N/A 52.4% N/A 332.0 N/A
10% 40.5% N/A 42.1% N/A 394.3 N/A

square 5% 25.0% 85.8% 97.9% 95.8% 14.5 N/A
10% 21.6% 75.5% 90.3% 88.5% 19.4 N/A

Aver. w/o sqrt 45.3% 90.3% 69.2% 85.6% 60.5 N/A

D. Study on Adders and Multipliers

In this section, we generate various approximate adders
and multipliers by HEDALS and compare them with the
circuits in EvoApproxLib (version 2022) [24], a widely-used
library of approximate arithmetic circuits, which collects a
series of approximate circuits from [25]–[28], produced by
evolutionary algorithm-based ALS methods. The selected
benchmarks are some largest adders and multipliers in
EvoApproxLib, i.e., 12-bit and 16-bit unsigned adders, and
8-bit, 11-bit, 12-bit, and 16-bit unsigned multipliers. For
each benchmark, we select the approximate designs in
EvoApproxLib generated under the NMED (called mean
absolute error in EvoApproxLib) constraint. Since the pub-
lished designs in EvoApproxLib are synthesized with a
different standard cell library, we re-synthesize and map
the EvoApproxLib designs into our Nangate 45nm library

with the same delay-oriented synthesis and mapping process
used in HEDALS. Then, to compare with each design in
EvoApproxLib, we apply HEDALS to generate an approx-
imate circuit with the NMED bound as the NMED of
the EvoApproxLib design. HEDALS works on the AIG
representation using the ALSRAC LAC. Since sometimes
there is a large gap between the error of an approximate
design C generated by HEDALS and the error bound, we
further simplify the design C with the ALSRAC LAC until
the error bound is reached. This post-processing can further
reduce circuit area without increasing delay.

The results are shown in Fig. 9. Each sub-figure of
Fig. 9 plots the delay ratio-NMED and area ratio-NMED
curves of the approximate designs synthesized by HEDALS
and those from the EvoApproxLib for a benchmark. We
can see that HEDALS always reduces more delay than
EvoApproxLib, except for two cases, the 12-bit adder under
an NMED of 0.018% and the 8-bit multiplier under an
NMED of 25%. Moreover, the delays of some EvoApprox-
Lib circuits sometimes exceed those of the corresponding
exact circuits, while HEDALS guarantees that the delay of
an approximate circuit is always smaller than that of the
corresponding exact design. It is not surprising because
HEDALS is designed for delay optimization, while the
EvoApproxLib method is not. Furthermore, HEDALS saves
more area than EvoApproxLib on the 12-bit adder and
achieves competitive area savings on the rest benchmarks. It
is because the EvoApproxLib designs are generated by the
evolutionary algorithm, which features randomness and may
miss some area reduction opportunities, while HEDALS
uses a different greedy strategy to select the LAC sets and
may capture some area reduction opportunities missed by
the evolutionary algorithm.

E. Comparison of HEDALS Performance with Different
LAC Types and Circuit Representations

Since HEDALS can be applied with different LAC types
and circuit representations, it is also interesting to study
the performance of HEDALS with different combinations
of LAC type and circuit representation. We perform this
study in this section on two arithmetic circuits, adder32
and mult8, and two error metrics, ER and NMED. The
selected ER bounds are 0.005, 0.01, 0.05, and 0.1, and
the selected NMED bounds are 0.005%, 0.01%, 0.05%,
and 0.1%. For each ER or NMED bound, we consider
constant and ALSRAC LACs, and AIG and gate-netlist
representations. Since the ALSRAC LAC cannot work on
gate netlists [7], only 3 combinations are studied, i.e.,
CONST+AIG, CONST+GATE, and ALSRAC+AIG. The per-
formance of HEDALS with the 3 combinations of LAC type
and circuit representation is shown in Table VI. The delay
and area ratios of each approximate circuit generated by
HEDALS with each combination are reported. Comparing
CONST+AIG with CONST+GATE, we can see that the
former reduces more delay and area in most cases. One
possible reason is that there are more nodes in an AIG than
in a gate netlist. Hence, an AIG has more candidate LACs
for circuit simplification, leading to better approximate
designs. Comparing ALSRAC+AIG with CONST+AIG, we
can see that the former outperforms the latter with smaller
delay and area ratios in most cases. It is not surprising since
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(a) 12-bit unsigned adder.

10−3 10−2 10−1 100 101
NMED (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ar
ea

/D
el
ay

 ra
tio

HEDALS Delay
EvoApp. Delay
HEDALS Area
EvoApp. Area

(b) 16-bit unsigned adder.
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(c) 8-bit unsigned multiplier.

10−1 100
NMED (%)

0.2

0.4

0.6

0.8

1.0

Ar
ea

/D
el
ay

 ra
tio

HEDALS Delay
EvoApp. Delay
HEDALS Area
EvoApp. Area

(d) 11-bit unsigned multiplier.

10−4 10−2 100
NMED (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ar
ea

/D
el
ay

 ra
tio

HEDALS Delay
EvoApp. Delay
HEDALS Area
EvoApp. Area

(e) 12-bit unsigned multiplier.
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(f) 16-bit unsigned multiplier.

Fig. 9. Comparison between the approximate designs synthesized by HEDALS and those from the EvoApproxLib on delay and area ratios versus
NMED.

TABLE VI. COMPARISON OF HEDALS PERFORMANCE WITH DIFFERENT LAC TYPES AND CIRCUIT REPRESENTATIONS UNDER ER AND NMED
CONSTRAINTS. “DR” MEANS DELAY RATIO, AND “AR” MEANS AREA RATIO. THE BEST CHOICE AMONG THE THREE COMBINATIONS OF LAC TYPE
AND CIRCUIT REPRESENTATION IS HIGHLIGHTED IN BOLD.

Circuit LAC+representation ER≤0.005 ER≤0.01 ER≤0.05 ER≤0.1 Average
DR AR DR AR DR AR DR AR DR AR

adder32
CONST+AIG 69.9% 96.4% 69.9% 96.4% 66.8% 95.9% 65.7% 93.6% 68.1% 95.6%

CONST+GATE 99.4% 96.5% 99.4% 96.5% 89.1% 95.5% 89.1% 95.5% 94.2% 96.0%
ALSRAC+AIG 69.9% 96.4% 66.2% 96.2% 69.3% 95.4% 61.1% 95.2% 66.6% 95.8%

mult8
CONST+AIG 97.0% 99.2% 97.0% 99.2% 97.0% 99.2% 95.0% 95.0% 96.5% 98.2%

CONST+GATE 100.0% 100.0% 100.0% 100.0% 99.6% 99.8% 94.6% 99.7% 98.6% 99.9%
ALSRAC+AIG 94.4% 99.0% 94.4% 99.0% 93.3% 86.7% 89.6% 99.5% 92.9% 96.0%

Circuit LAC+representation NMED≤0.005% NMED≤0.01% NMED≤0.05% NMED≤0.1% Average
DR AR DR AR DR AR DR AR DR AR

adder32
CONST+AIG 62.7% 60.3% 59.8% 59.4% 58.5% 47.2% 47.6% 37.5% 57.1% 51.1%

CONST+GATE 70.8% 91.0% 60.1% 73.8% 57.1% 74.7% 57.1% 74.7% 61.2% 78.5%
ALSRAC+AIG 62.7% 60.3% 59.8% 59.4% 53.1% 45.9% 52.5% 38.7% 57.0% 51.1%

mult8
CONST+AIG 97.0% 99.2% 97.0% 99.2% 91.8% 93.8% 82.7% 92.7% 92.1% 96.2%

CONST+GATE 100.0% 100.0% 100.0% 100.0% 90.5% 95.3% 89.5% 94.3% 95.0% 97.4%
ALSRAC+AIG 95.5% 96.1% 96.2% 98.2% 90.0% 96.9% 80.5% 87.0% 90.6% 94.5%

the ALSRAC LAC is based on signal resubstitution, which
is a more fine-grained circuit simplification technique than
constant replacement. To sum up, ALSRAC+AIG is the best
choice for the two circuits.

VIII. CONCLUSION

In this work, we proposed HEDALS, a highly efficient
delay-driven approximate logic synthesis framework. Its
basic idea is to establish a critical graph of a target circuit
and find an optimized LAC set based on the graph, which is
then applied to shorten all the critical paths simultaneously.
A maximum flow-based method and a priority cut-based
method are proposed to find an optimized LAC set. The
former is faster, while the latter can lead to better approxi-
mate designs. The experimental results on a wide range of
benchmarks show that HEDALS outperforms the state-of-
the-art ALS approaches. Furthermore, it supports various
LACs, circuit representations, and average error metrics.
Thus, HEDALS is a promising solution for synthesizing
approximate circuits with minimized delays.
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